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ABSTRACT 

Time series prediction techniques have been used in many real-world applications such as 

financial market prediction, electric utility load forecasting, weather and environmental state 

prediction, and reliability forecasting.  The underlying system models and time series data 

generating processes are generally complex for these applications and the models for these 

systems are usually not known a priori.  Accurate and unbiased estimation of time series data 

produced by these systems cannot always be achieved using well known linear techniques, and 

thus the estimation process requires more advanced time series prediction algorithms.   

One type of time series interpolation and prediction algorithm that has been proven to be 

effective for these various types of applications is Support Vector Regression (SVR) [1], which 

is based on the Support Vector Machine (SVM) developed by Vapnik et al. [2, 3].  The 

underlying motivation for using SVMs is the ability of this methodology to accurately forecast 

time series data when the underlying system processes are typically nonlinear, non-stationary 

and not defined a-priori.  SVMs have also been proven to outperform other non-linear techniques 

including neural-network based non-linear prediction techniques such as multi-layer perceptrons.   

As with most time series prediction algorithms, there are typically challenges associated 

in applying a given heuristic to any general problem.  One difficult challenge in using SVR to 

solve these types of problems is the selection of free parameters associated with the SVR 

algorithm.  There is no given heuristic to select SVR free parameters and the user is left to adjust 

these parameters in an ad hoc manner. 
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The focus of this dissertation is to present an alternative to the typical ad hoc approach of 

tuning SVR for time series prediction problems by using Particle Swarm Optimization (PSO) to 

assist in the SVR free parameter selection process.  Developed by Kennedy and Eberhart [4-8],    

PSO is a technique that emulates the process living creatures (such as birds or insects) use to 

discover food resources at a given geographic location.  PSO has been proven to be an effective 

technique for many different kinds of optimization problems [9-11]. 

In this dissertation, the general problems associated with time series prediction and their 

associated algorithms are presented first.  Second, both the SVR and PSO algorithms are 

discussed in detail which leads to the third part, formulating the fusion of both SVR and PSO 

algorithms, called Constrained Motion Particle Swarm Optimization (CMPSO).  CMPSO not 

only provides a method for SVR free parameter selection, but also provides computational 

efficiency benefits.  Finally the CMPSO algorithm is benchmarked using both artificially 

generated and real world data and is compared to other published non-linear time series 

prediction algorithms against the same benchmark data.  Specifically, CMPSO performance is 

analyzed against artificial, arbitrary functions as well as real world financial market index data 

(S&P 500).  CMPSO is also benchmarked against Mackey-Glass non-linear data, real power 

company electrical load data and another artificial time series used for a competition.  CMPSO 

performed well and also would have been placed first in at least one of the time series prediction 

competitions. 

 



www.manaraa.com

 

1 
 

 

 

 

 

 

 

CHAPTER 1: INTRODUCTION 

 

 

1.1 Time Series Prediction  
 

Fundamentally, the goal of time series prediction is to estimate some future time series 

value based on current and past data samples.  Mathematically stated in Equation (1.1): 

 

  ),...)(),(),((ˆ ctxbtxatxftx t   (1.1) 

 

where, in this specific example, x̂  is the predicted value of a (one dimensional) discrete time 

series x.  The variables a, b, c, etc., are (positive) time offsets and t is a positive number greater 

or equal to zero representing a future time for an estimated sample. 

The objective of time series prediction is to find a function f(x) such that x̂ , the predicted 

value of the time series at a future point in time is unbiased and consistent.  An unbiased 

estimator [12] is one where the expected value of the estimate of x should approach the actual 

value of x.  A consistent estimator [12] is one where the variance of the predicted value will 

approach zero as the number of samples increases and is shown in Equation 1.2: 

0])ˆ[(lim 2 



xxE

N

N  (1.2) 

  

where x is the time series function to be estimated, x̂  is the estimated function, N is the number 

of time series samples, and E[.] is the expected value operator. 
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An unbiased and consistent estimator will tend to have an expected value of the 

difference in the predicted and actual functions as well as the variance of this difference both 

approach zero simultaneously.  Specific time series prediction metrics related to bias and 

consistency will be discussed in Section 5.1. 

Estimators generally fall into two categories: linear and non-linear.  Over the past several 

decades, a vast amount of technical literature has been written about linear prediction: the 

estimation of a future value based on the linear combination of past and present values.  Real 

world time series prediction applications generally do not fall into the category of linear 

prediction.  Instead, they are typically characterized by non-linear models.   

1.2 Challenges in Time Series Prediction 

 

There are many different kinds of time series prediction algorithms, each one performing 

differently depending on the type of data being analyzed.  Table 1.1 highlights the benefits and 

challenges for many different kinds of prediction algorithms, including SVR. 

Although the advantages of SVR have been shown to be significant as compared to other 

algorithms for time series prediction, the challenge associated with selecting SVR free 

parameters is considerable. 

1.3 Research Motivation 

Non-linear time series regression and prediction applications range from financial market 

prediction, electrical load forecasting, dynamic control system design, to a vast array of other 

real world problems.  As stated earlier, there are many methods to solve such problems including 

Auto Regressive Moving Average (ARMA) algorithms (in many different forms) [12, 13], 

Kalman Filtering (also in many different forms) [12-17], Artificial Neural Networks (ANNs) [18, 

19], Support Vector Machines (SVMs) and SVR [20-45], as well as several others.   
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Any of the above algorithms can be applied to real world problems, some with greater 

success than others.  In many cases the success of the algorithm for a given application depends 

heavily on algorithm “tuning”: the process of optimizing the algorithm for the specific problem 

space.  Some examples of “tuning” include model selection (as with Kalman Filtering) and free 

variable constant selection (as with SVR).  The employment of some algorithms such as SVR 

further requires the use of a Quadratic Program (QP) to solve for the given algorithmic 

parameters, thus increasing the computational complexity of these kinds of approaches [21, 46-

50]. 

Although SVMs/SVR algorithms are generally considered computationally complex, it 

has been well documented that they are effective for time series prediction applications [1] as 

well as regression (interpolation) applications.  The challenge remains to optimize the SVR free 

parameters effectively while accurately estimating the time series.  Given the advantages of 

using SVR for time series prediction, the motivation of this research is to identify an 

optimization algorithm that can address the SVR parameter tuning challenge while 

simultaneously adapt to a wide variety of applications.   

1.4 Contributions and Organization 

This dissertation proposes an SVR based approach for both time series prediction and 

regression while simultaneously using Particle Swarm Optimization (PSO) [51-60] to optimize 

SVR free parameters.  Although PSO based SVR optimization techniques have been developed 

into one approach, the methodology presented in this research is unique in that the process 

necessary to compute an SVR estimate of a time series is integrated with the PSO optimization 

formulation, making the overall computation more efficient.  By constraining the motion of the 

particles, there is a reduction in the solution space required to examine to find an optimal 
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solution.  In addition, this PSO and SVR framework is adaptable to a wide variety of applications 

without the need of the user to tune any parameters.  These specific algorithmic features detailed 

in this research are unique and have not been presented before in literature.   

As with any time series estimation method, this approach will be benchmarked against 

other well-known time series sets for comparison to other published algorithms.  It will be shown 

that the exact same framework, without any modification, will produce a time series estimate for 

many different kinds of problems.  The applications range from common mathematical time 

series functions, to more complicated real world applications such as stock market index 

prediction, power load forecasting, and other synthetic data interpolation and extrapolation 

applications.  

In summary, the main contributions and results of this research include: 

 A general heuristic for selecting required SVR user defined parameters. 

 A computationally more efficient method for PSO based SVR user defined 

parameter optimization. 

 A generic framework adaptable to many different one dimensional time series 

regression and prediction problems that does not require user adjustments. 

 A time series interpolation and extrapolation method that produced significant 

results as compared to other similar approaches.  The results are based against 

worldwide time series regression competitions, in which CMPSO provided a 

goodness of fit that met or in some cases exceeded all other competitive 

algorithms. 

The organization of the dissertation is as follows: 
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In Chapter 2, we discuss the wide variety of real world time series prediction applications 

associated with SVM and SVR, along with PSO based optimization of SVM/SVR algorithms.  

We also introduce time series prediction benchmarks and summarize their use as evaluation tools 

for any type of time series prediction method. 

In Chapter 3, we review the formulation of SVR and identify parts of the formulation that 

are adapted for optimization using PSO.  We will discuss the concept of primal and dual 

objective functions as well as the use of kernel functions to cast time series data into another 

form. 

In Chapter 4, we review the formulation of PSO.  Specifically, we will review the 

terminology and definitions associated with PSO, the PSO framework and process, and some 

specific parameters that will be linked to SVR. 

In Chapter 5, we present the CMPSO framework, which includes the fusion of both SVR 

and PSO algorithms for time series prediction and interpolation.  Additionally, we discuss the 

advantages of this approach including the flexibility in adapting this technique to a wide variety 

of different time series applications. 

In Chapter 6, we test the CMPSO algorithm against both artificial and real world time 

series data and compare its performance to other published algorithms.  First, we define time 

series prediction metrics by which time series prediction algorithms are measured.  We briefly 

discuss computational complexity in the context of the integrated SVR/PSO CMPSO approach 

vs. other typical approaches where SVR optimization is executed outside the PSO optimization 

routine.  Next we illustrate CMPSO performance with an arbitrary function, an arbitrary function 

missing data and a real world stock market index example.  Then we test CMPSO’s performance 

against other published algorithms.  The first example illustrates CMPSO performance using a 
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common, artificial time series benchmark called Mackey-Glass data [61] and is compared to 

other comparable time series prediction algorithms.  The second example shows CMPSO 

performance using the European Network on Intelligent Technologies for Smart Adaptive 

Systems (EUNITE) competition data [62, 63].  The goal of EUNITE is to test several algorithms 

by predicting maximum electrical power loads for the East-Slovakia Power Distribution 

Company for one future month given two prior years’ worth of daily electrical load data.  The 

last example illustrates CMPSO performance via Competition on Artificial Time Series (CATS) 

data where several algorithms were to predict (interpolate) four sets of 20 missing data points out 

of a total of 4980 time series samples [64].  In addition, the same algorithms were to predict 

(extrapolate) the last 20 time series data points of the CATS data. 

In Chapter 7, we summarize our findings and propose recommended further research 

areas. 
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Table 1.1: Summary of Advantages and Challenges of Classical, ANN Based, and SVR Time 

Series Prediction Methods 

 

Time Series 

Prediction 

Method 

 

Advantages 

 

Challenges 

Autoregressive 

Filter [12,13] 

- Can be computationally efficient for 

low order models 

- Convergence guaranteed 

- Minimizes mean square error by 

design 

- Assumes linear, stationary 

processes 

- Can be computationally 

expensive for higher order 

models 

Kalman Filter 

[12-17] 

- Computationally efficient by design 

- Convergence guaranteed 

- Minimizes mean square error by 

design 

- Assumes linear, stationary 

processes 

- Assumes process model is 

known 

Multi-layer 

Perceptron 

[18,19] 

- Not model dependent  

- Not dependent on linear, stationary 

processes  

- Can be computationally efficient 

(feed forward process) 

 

- Number of free parameters 

large 

- Selection of free parameters 

usually calculated 

empirically 

- Not guaranteed to converge 

to optimal solution 

- Can be computationally 

expensive (training process) 

SVR [20-45] - Not model dependent  

- Not dependent on linear, stationary 

processes  

- Guaranteed to converge to optimal 

solution 

- Small number of free parameters 

- Can be computationally efficient 

(estimation process)  

- Selection of free parameters 

usually calculated 

empirically 

- Can be computationally 

expensive (training process) 
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CHAPTER 2: SVM BASED TIME SERIES PREDICTION AND BENCHMARKS 

 

2.1   Time Series Prediction and Support Vector Machines 

Time series prediction techniques have been used in many real-world applications such as 

financial market prediction, electric utility load forecasting, weather and environmental state 

prediction, and reliability forecasting.  The underlying system models and time series data 

generating processes are generally complex for these applications and the models for these 

systems are usually not known a priori.  Accurate and unbiased estimation of the time series data 

produced by these systems cannot always be achieved using well known linear techniques, and 

thus the estimation process requires more advanced time series prediction algorithms. 

 The underlying motivation for using SVMs is the ability of this methodology to 

accurately forecast time series data when the underlying system processes are typically 

nonlinear, non-stationary and not defined a-priori.  SVMs have also been proven to outperform 

other non-linear techniques including neural networks.  Traditionally Support Vector Machines 

(SVMs), as well as other machine learning algorithms are used for classification in pattern 

recognition applications.  These learning algorithms have also been applied to general regression 

analysis:  the estimation of a function by fitting a curve to a set of data points.  The application of 

SVMs to general regression analysis case is called Support Vector Regression (SVR). A detailed 

general survey of SVM applications for time series can be found in [1]. 

2.1.1   Support Vector Machine Applications 

Of all the practical applications using SVR for time series prediction, financial data time 

series prediction appears to be one research area that has a considerable amount of research 
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interest.  The inherent noisy, non-stationary and chaotic nature of this type of time series data 

appears to lend itself to the use of non-traditional time series prediction algorithms such as SVR.  

As seen in references [65] through [85] alone, there are many different SVM based approaches to 

many different kinds of financial data.  All of the research noted here has at least one thing in 

common (other than an SVM based solution): there is no given heuristic to tune the required set 

of SVR user defined parameters.  The cited research uses many alternative optimization 

algorithms, such as genetic algorithms, to assist the SVR process in finding an optimal curve fit.  

The methods presented in this research tend to include an  insensitive loss function as well as a 

radial basis kernel function, both of which will be discussed in more detail in Chapter 3.  

Another common thread in the research is the reliance of the stated methods to use specific 

Quadratic Programming (QP) methods to solve for the SVR estimation. 

A non-linear prediction problem found in power systems research is the forecasting of 

electrical power consumption demands by consumers.  There are many beneficial aspects to the 

accurate prediction of electrical utility load forecasting including proper maintenance of 

electrical energy supply, the efficient utilization of electrical power resources, and the proper 

administration and dissemination of these resources as related to the cost of these resources to 

the consumer.  Power load forecasting is yet another widely researched application for SVR.  As 

with the financial market forecasting citations, the SVR based power load prediction applications 

also tend to use an e insensitive loss function, a radial basis kernel function, and publically 

available QP programs [46-50]. 

Although the two research areas mentioned above appear to be the most prevalent 

applications for SVR, there are many other real world applications such as control systems and 
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signal processing, machine reliability forecasting, meteorological data forecasting, and many 

others [1].   

2.1.2   Support Vector Machines and Particle Swarm Optimization 

As mentioned in the previous section, there are a wide variety of SVM/SVR based real 

world applications.  One of the common threads found in published SVR based solutions is that 

there is no one heuristic to tune SVR for any given application.  However, there have been many 

applications using Swarm Optimization (SO) based techniques, including Particle Swarm 

Optimization (PSO), to assist in finding an optimal SVM/SVR based time series estimate.  This 

dissertation explores a unique implementation of PSO and SVR that will represent a general 

framework for solving these kinds of problems. 

Wang et al. [51] uses PSO to solve for the three user defined SVR parameters, error 

sensitivity control parameter, a regularization constant, and a user defined parameter associated 

with the SVR kernel function (often referred to as , C, and  respectively; these parameters will 

be discussed in detail in Chapter 3) for a real world application (coal working face gas 

concentration forecasting).  This is a similar approach to the presented research in this 

dissertation, although the SVR optimization in this citation still requires a separate QP algorithm.  

Although Wang presents a feasible approach, there is still the computational overhead associated 

with using SVR and PSO in a non-integrated methodology. 

There are many other recent and similar SVR and PSO combined approaches that have 

been published recently that use PSO to optimize SVR free parameters [52 through 60].  The 

applications in these publications range from power load forecasting, traffic flow optimization, to 

benchmark data estimation, and many others.  There are also other general modifications to the 

algorithms in the citations, but the core processing algorithms are based on both SVM/SVR and 
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PSO.  All of these publications show that a PSO based approach to SVR parameter tuning is 

viable and effective for many different problems.  However, none of the researched publications 

address the computational overhead involved with using a QP solver to find an appropriate SVR 

solution.  Also, there is no explicit discussion of the necessary data preprocessing required to 

adapt any given approach to any given problem.  The research in this dissertation addresses both 

of these challenges. 

2.2   Time Series Prediction Performance Benchmarks 

As with any algorithm, there are usually defined methods by which an algorithm can be 

evaluated for performance.  Data sets referred to as benchmarks are developed and used 

worldwide in order to facilitate the evaluation and comparison of any given algorithm.  For time 

series prediction and regression based applications, there are many benchmark data sets available 

for use.  This dissertation focuses on three common benchmarks that are found in many 

algorithmic performance evaluations: Mackey-Glass data [61], EUNITE Competition data [62, 

63] and CATS competition data [64].  A brief description is given below with detailed numeric 

results and comparisons to other published approaches are given in Chapter 6. 

2.2.1   Mackey-Glass Data 

Mackey-Glass data is highly non-linear chaotic time series data that is used to evaluate 

time series prediction and regression algorithms.  It should be noted that it is synthetic data and 

can be generated by solving a specific, time delayed differential equation [61]. 

Many SVR based methods researched use Mackey-Glass data as the reference data set to 

estimate performance [25, 28, 34, 86 through 91].  The PSO/SVR methodology described in this 

dissertation is compared to eight different algorithms that use Mackey-Glass benchmark data to 

show a comparison of performance.  Several of the methodologies used for comparison use some 
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form of SVM/SVR as part of the approach.  Section 6.5.1 details the performance comparisons 

between this research and other published approaches. 

2.2.2   EUNITE Competition 

The Mackey-Glass benchmark data set is a common data set used to evaluate time series 

prediction problems and it is synthetically generated from the solution of a differential equation.  

Another common benchmark data set is from the European Network on Intelligent Technologies 

for Smart Adaptive Systems (EUNITE; see references [62, 63]) competition which is seen in 

many publications.  Unlike Mackey-Glass data, this data is from real world power utility 

company loading data.  The goal of the competition is to predict one month of maximum power 

loads based on the prior two years of both daily power load data as well as daily temperature 

data. 

Many of the approaches used are SVR and Artificial Neural Network (ANN) based 

approaches.  The PSO/SVR approach shown in this research is compared to the top ten results of 

the competition [92-101].  In addition, many recent publications have used this data as a 

benchmark for their algorithm design and performance [102-106].  Again, the PSO/SVR 

approach performance is compared to these recently published results for comparison.  More 

details are provided in Section 6.5.2. 

2.2.3   CATS Data 

The Competition for Artificial Time Series (CATS) [64] is the last benchmark data this 

research is tested against.  As with the EUNITE competition, CMPSO performance is compared 

to the top ten contestants [107-116] as well as recent publications using this dataset for 

evaluation [117-121].   
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The CATS competition included the estimation of four 20 point sets of missing data gaps 

in a time series of 4980 points.  In addition, the last 20 data points are extrapolated and compared 

to the original data for scoring.  The PSO/SVR approach is compared to the top ten algorithms 

submitted to the competition as well as several recent publications and algorithms that use the 

CATS benchmark data for reference. 

In conclusion, there is significant research interest in advanced learning methods applied 

to time series prediction and estimation problems.  It has been well documented that PSO can be 

applied to aid in the optimization of an SVR based approach.  It is also well documented that 

SVR approaches, including the one presented in this research, perform well against many 

different data sets, including standard benchmark data sets described in this chapter.  As will be 

seen in this dissertation, the core of the time series regression formulation is Support Vector 

Regression. 
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CHAPTER 3: SUPPORT VECTOR REGRESSION 

 

3.1   Introduction to Support Vector Machines  

SVM is a pattern recognition algorithm based on statistical learning theory developed by 

Vapnik and Chervonenkis [2, 3].  SVMs are a form of neural network and employ a supervised 

learning training paradigm.  Neural network based algorithms have many significant benefits and 

properties [18]: 

 Nonlinearity: an important property that can adapt to non-linear inputs. 

 Input-Output Mapping: Inputs to SVM are weighted as training samples are 

presented to the SVM.  As more training samples are presented, the SVM will 

adapt the weights based on an expected response.  This is essentially the 

supervised learning paradigm. 

 Adaptive: SVMs can change, or adapt, to different training inputs dynamically. 

 Application Independence: Regardless of the underlying processes used to 

generate the input and desired output, the same fundamental architecture can be 

used. 

 Sparse Data Representation: Typically the number of support vectors required to 

define the SVM or SVR function is significantly less than the total number of 

training points required. 

Many books, journal publications, and electronic references currently exist regarding the 

formulation of SVM as well as SVR.  The following formulations of SVM and SVR found in 
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this chapter are based on Vapnik’s reference books [2, 3], a reference book by Smola and 

Scholköpf [20], an SVM/SVR overview with references to Quadratic Programing (QP) specific 

to SVM by Cristianini and Shawe-Taylor [21], a rigorous tutorial by Smola and Scholköpf [22], 

and several other relevant SVM/SVR references found in [23-37].  There are also many web 

based references available in references [38-45]. 

The fundamental purpose of an SVM is to mathematically define a surface that separates 

two different classes of data.  This surface is typically called a hypersurface.  As an example, 

data that lies on one side of the hypersurface will be numerically classified as +1 and data that 

lies on the opposite side will be represented by a -1.  Figure 3.1 illustrates a simple two 

dimensional classification problem with two classes of data. 

 

Figure 3.1: Pattern Recognition Example with Two Class Data in Two Dimensions  

In Figure 3.1, the red X’s represent one class of data and the blue O’s represent the other.  

These two sets of two dimensional data as defined by the variables X1 and X2, are separated by a 
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non-linear curve as illustrated by the green line between the individual data points.  The green 

line separating the two data sets is the hypersurface and is computed by the SVM.  Each data 

point in this example would be one sample of a training data set that would be presented to the 

SVM in order to generate the separating hypersurface.  Equation 3.1 defines the training data set 

as: 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒𝑠: {(𝒙𝑖, 𝑑𝑖)}|𝑖=1
𝑁  (3.1) 

 

where xi is any given point location illustrated in Figure 3.1, di are the classifications for each 

point (+/- 1 as an example), and N are the total number of points in the training set.   

The SVM formulation starts with an assumption of linearly separable data as represented 

by the equation of a linear hypersurface shown in Equation 3.2: 

𝑓(𝒙) =  ∑𝑤𝑖𝒙𝑖

𝑁

𝑖=0

+ 𝑏 (3.2) 

  

where xi is the multi-dimensional variable, wi are real valued weights and b is a bias term offset.  

For the case of a two class pattern recognition problem, Equations 3.3 and 3.4 represent the 

decision making process for any given data point: 

 ∑𝑤𝑖𝒙𝑖

𝑁

𝑖=0

+ 𝑏 ≥ 0 𝑓𝑜𝑟 𝑑𝑖 = +1 (3.3) 

  

∑𝑤𝑖𝒙𝑖

𝑁

𝑖=0

+ 𝑏 < 0 𝑓𝑜𝑟 𝑑𝑖 = −1 
(3.4) 

 

Figure 3.2 illustrates an example of linearly separable data.  In this example, the data can 

be separated by the function defined in Equation 3.2 for some optimal set of w and b.  Also 

illustrated is a subset of the training points located on the green dashed lines which lay some 
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distance  from the optimal hypersurface.  Data points that are found to lie on these dashed lines 

are known as support vectors.   

 

Figure 3.2: Linear Pattern Recognition Example with Two Class Data in Two Dimensions 

Illustrating Support Vectors and Outliers 

 

It will be shown that the support vectors and their associated weights (plus a bias term) 

are all that is required to define the separating hypersurface.  Also shown in Figure 3.2 are 

outliers.  These are data points that fall on the opposing classification side of the separating 

hypersurface and would normally be classified incorrectly.  The data points are said to be 

inseparable.  The SVM (and SVR) formulation allows for such errors and the handling of these 

errors will be addressed later in this chapter. 

Equation 3.5 below defines the equation for the optimal hypersurface f0(x), rewritten as 

the dot product between a set of optimal weights and the independent variable (vector) x: 

𝑓0(𝒙) =  𝒘0 ∙ 𝒙 + 𝑏0 (3.5) 
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The goal is to find the optimal hypersurface such that the distance between any given 

point and the hypersurface is maximized.  From [18], Equation 3.6 shows that the distance r 

from any given point x to the hypersurface f0(x) is defined as: 

𝑟 =  
𝑓0(𝒙)

‖𝒘0‖
 (3.6) 

  

where ||w0|| represents the Euclidean norm of the optimal weight vector.  It turns out support 

vectors lay on the boundary of the equality constraint in Equation 3.3 and a similar equality 

Equation in 3.4 for both cases where d is +/- 1 [18].  Given this, the optimal distance for support 

vectors can be defined in Equation 3.7: 

𝑟 =  
𝑓0(𝒙

𝑺)

‖𝒘0‖
=

{
 

 
1

‖𝒘0‖
𝑖𝑓 𝑑𝑆 = +1

−
1

‖𝒘0‖
𝑖𝑓 𝑑𝑆 = −1

 (3.7) 

 

where the superscript S denotes a support vector. 

Given the distance r from a support vector of each class to the optimal hypersurface, the 

separation margin can be defined as twice the distance r from one class to the other class.  In 

summary, optimizing SVM for pattern recognition requires maximizing the separation between 

classes of data which is determined by minimizing the Euclidian norm of the weight vector w. 

3.2   Time Series Regression 

The SVM framework outlined in Section 3.1 can now be applied to time series regression 

problems.  First, we define time series regression as “a method for fitting a curve (not necessarily 

a straight line) through a set of points using some goodness of fit criterion” [122].  The goal is to 

use a similar framework as defined for SVM for time series prediction and estimation 

applications.  This framework will lend itself to the framework of Support Vector Regression, or 

SVR. 
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The SVM framework described in Equation 3.1 is manipulated for regression 

applications by first changing the target data representation.  Instead of a discrete classification 

of +/- 1 represented by the variable d in Equation 3.1, we now introduce a real valued function 

f(x) as shown in Equation 3.8: 

𝑓(𝒙) = 〈𝒘, 𝒙〉 + 𝑏 (3.8) 

 

where w, x, are real valued vectors, f(x) and b are real valued numbers and the 〈∙〉 notation 

represents the dot product of the two vectors.  For the purposes of this dissertation, we are only 

going to examine data sets that are two dimensional functions, defined by the training set in 

Equation 3.9: 

 

We will use bold face letters such as x and w to represent a one dimensional vector and 

subscripted variables such as xi and yi to represent individual data points. 

As with the pattern recognition problem, the goal once again is to find optimal values of 

w and b such that the Euclidian norm of w is minimized.  The process of minimizing w is often 

referred to as “flattening”.  As seen in Equation 3.9, the real vector x has a one to one mapping to 

a single real value y for all N training samples.  Clearly the formulation in Equation 3.7 is 

essentially the same as defined for pattern recognition in Equation 3.2, with the exception of the 

real valued output. 

The goal is to find the regression function f(x) such that it lies within an error bound  as 

shown in Figure 3.3.  In this example, the red points represent N training data points, the solid 

green line represents the estimated function f(x) and the two dashed green lines represent the 

error bound  around the estimated function f(x). 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒𝑠: {(𝑥𝑖, 𝑦𝑖)}|𝑖=1
𝑁  (3.9) 
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Figure 3.3: Support Vector Regression Linear Approximation Example 

As seen in Figure 3.3, this example shows a linear regression type problem where the 

fitted curve f(x) is a straight line as defined in Equation 3.8.  Again, the goal is to find f(x) such 

that all of the training points fall within +/-  of f(x).  As can be seen, there are two outlier points 

in Figure 3.3 marked as points A and B.  These points fall outside the  error bound and must be 

somehow be tolerated in the SVR formulation.  These cases will be explained in the primal 

objective function discussion in Section 3.4. 

It is clear that not every time series regression problem will have a linear form of solution 

as defined in Equation 3.8.  Figure 3.4 is a more typical example of a real world time series plot.  

Again, the red points are the training data and f(x), shown as the green solid line, is the 

approximation to those points.  The dashed green lines illustrate the e error bound.  Also shown 

in this example are two outlier points marked A and B.  Again, these conditions will be handled 

in Section 3.4. 
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Figure 3.4: Support Vector Regression Non Linear Approximation Example 

It is now clear that the approximating function defined in Equation 3.8 will no longer 

work for this kind of problem as a linear fit is not appropriate unless the error bounds are set to a 

very high value.  We would still like to use a linear formulation as stated in Equation 3.8, but a 

data transformation will have to be used. 

3.3 Kernel Functions 

Figure 3.4 illustrates a time series regression problem where a linear curve fit will not be 

suitable as an approximation.  The goal is to try and maintain the SVM/time series regression 

framework defined in Sections 3.1 and 3.2 where a linear approximation is used.  One way of 

manipulating the data is to use a transformation function that will map the training set points 

(xi,yi) into what is commonly referred to as feature space.  This transformation process is done to 

attempt to cast the variables into another space as shown in Equation 3.10. 

𝒙 = (𝑥1, … , 𝑥𝑛) → 𝜙(𝒙) = (𝜙1(𝒙),… , 𝜙𝑀(𝒙)) (3.10) 
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where n are the number of sample data points and M is the number of dimensions in feature 

space.  The linear regression in Equation 3.8 can now be restated in feature space in Equation 

3.11. 

𝑓(𝑥) =∑𝑤𝑖𝜙𝑖(𝑥) + 𝑏

𝑀

𝑖=1

 (3.11) 

 

We now have the same linear combination of weights and bias term representing the time 

series to be estimated.  Figure 3.5 illustrates the transformation of variable space. 

 

Figure 3.5: Time Series Example Mapped in to Feature Space 

Figure 3.5 illustrates how the transformation of time series data points from their original 

space to an alternative feature space enables the use of the linear approximation shown in 

Equation 3.8 to be used for estimation.  The goal of SVR is to use an appropriate transformation 

function that will allow any arbitrary time function to be translated to a space where a linear fit 

would yield an accurate estimation. 
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The SVR primal objective function formulation (described in the following section) 

requires the product of a given data point cast into feature space and the training samples also 

cast in to feature space to be computed.  This computation, as shown in Equation 3.12, defines 

the kernel function, or sometimes referred to as the inner-product kernel, which is essential to the 

formulation of the SVR optimization problem.  Equation 3.13 is the more general inner product 

representation. 

𝐾(𝑥, 𝑥𝑖) =∑𝜙𝑗(𝑥)𝜙𝑗(𝑥𝑖)

𝑀

𝑗=1

 

 

(3.12) 

 

𝐾(𝑥, 𝑧) = 〈𝜙(𝑥), 𝜙(𝑧)〉 (3.13) 

 

where M is the number of dimensions in feature space and i is an arbitrary index to a time series 

data point.   

There are several requirements and features associated with kernel functions, with some 

of them listed below: 

 Kernel functions must be semi-positive definite (this requirement is associated 

with Mercer’s Theorem as related to kernel functions). 

 Kernel functions are symmetric. 

 A linear combination of kernel functions is also a kernel function. 

A more exhaustive list of kernel function requirements can be found in references [22, 

23]. 

One can now formulate an arbitrary kernel function as necessary following the 

requirements stated above.  For the purpose of this research, three candidate kernel functions 

were considered for CMPSO.  The first is typically called a polynomial kernel or polynomial 

learning machine as is defined in Equation 3.14. 
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𝐾(𝒙, 𝒙𝒊) = (𝒙
𝑻𝒙𝒊 + 1)

𝑝
 (3.14) 

 

where i is an arbitrary index to a time series data point and p is an integer that is typically defined 

a priori by the user. 

The second type of kernel is one that uses the hyperbolic tangent function, sometimes 

referred to as a two-layer perceptron and is shown in Equation 3.15. 

𝐾(𝒙, 𝒙𝒊) = 𝑡𝑎𝑛ℎ(𝑏0𝒙
𝑻𝒙𝒊 + 𝑏1) (3.15) 

 

where b0 and b1 are selected parameters (in some cases the selection of b0 and b1 might violate 

the kernel restriction requirements). 

The last kernel function considered is the radial basis function or exponential function as 

shown in Equation 3.16. 

𝐾(𝒙, 𝒙𝒊) = 𝑒
−
1
2𝜎2

‖𝒙−𝒙𝒊‖
2

 (3.16) 

 

It is observed that for the vast majority of the literature reviewed for this research as 

documented in [1], the radial basis function is the most widely used in all of the non-linear time 

series prediction applications.  It should also be noted that there is no specific mathematical or 

computational complexity constraint in using this function vs. using any of the other listed 

functions. A study of specific kernel function performance for time series estimation should be 

considered for future research. 

3.4   Primal Objective Function Formulation 

Beginning with the SVM problem formulation in Section 3.1, we have defined a linear 

representation of an optimal separating hypersurface between two representative classes of data.  

This formulation showed that finding the optimal hypersurface meant that one had to find the 

maximum separation distance between the two classes.  This was equivalent to minimizing the 
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Euclidian norm of the weights in the linear representation shown in Equation 3.2.  This concept 

was extended to time series regression problems where the same linear approximation was 

illustrated in Equation 3.8.  As it turns out, the same minimal flatness criterion for the weights is 

required for the regression problem as well as the pattern recognition problem.  The formulation 

in Equation 3.8 is useful for applications where a linear fit to the data is sufficient; however 

almost all real world applications require some sort of nonlinear curve fitting.  The same 

framework can be applied to nonlinear applications if the data is transformed into feature space 

via the use of kernel functions as defined in Section 3.3. 

Given the above nonlinear curve fitting problem and associated support vector and kernel 

function techniques described previously, we can now develop what is referred to as the primal 

objective function definition of SVR.  The primal objective function is formulated to be a convex 

optimization problem that ensures the flatness criterion is met.  A convex optimization problem 

is defined as finding an optimal point of some function that satisfies Equation 3.17 [123]. 

𝑓(𝑥∗) ≤ 𝑓(𝑥) for all x∈𝑋 (3.17) 

 

where f(x) is a real valued function and x* is the point at which the function is the smallest. 

For SVR, we formulate a convex optimization problem with two linear constraints as 

shown in Equations 3.18 and 3.19. 

minimize   
1

2
‖𝒘‖2 (3.18) 

 

subject to {
𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀

𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀
 

(3.19) 

 

where y is a sample of the training set and f(x) is the estimation of the same sample in the 

training set.  The 0.5 scaling constant is presented for convenience relative to the dual objective 

function formulation presented in the next section.  The error bound  was shown in Figure 3.4.  
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This type of optimization problem is also referred to as a quadratic programming problem as the 

objective function, in this case the minimization of the Euclidean norm of the weights squared as 

seen in Equation 3.18, is quadratic.  Also associated with quadratic programs is set of linear 

constraints as formulated for SVR in Equation 3.19.  As stated in Section 3.2, we would like to 

minimize the error associated with the difference between the actual data represented as y and 

the estimated data set represented by f(x).  The constraints shown in Equation 3.19 do not allow 

for errors outside the  error bound.  Any errors found outside this bound would make this 

optimization problem infeasible to solve. 

In reality, one would like to allow for some amount of error in the formulation shown in 

Equation 3.18 and make the overall quadratic program have a feasible solution.  This can be seen 

by the errors shown in Figure 3.4 which are represented by points A and B.  The error, denoted 

as , is clearly outside the  error bound, violating the linear constraints in Equation 3.19.  The 

variable  as shown in Figure 3.4 is generally referred to as a slack variable, with the obvious 

connotation for allowing errors outside the  bound.  A reformulation of the quadratic function in 

Equation 3.18 and the linear constraint functions in Equation 3.19 are now presented in 

Equations 3.20 and 3.21. 

minimize   
1

2
‖𝒘‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑁

𝑖=1

 (3.20) 

 

subject to {

𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖
𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

𝐶 > 0

 
(3.21) 

 

The reformulation of the objective function in Equation 3.20 now allows for error beyond 

the  bound, but at a cost.  This is also reflected in the linear constraint equations shown in 
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Equation 3.21.  It should be noted that the two slack variables represented in this formulation 

only represent the amount of error beyond the  error bound.  Only one of the two slack variables 

will be non-zero, depending if the estimated function f(x) is above or below the training value y.  

The constant C is typically referred to as a regularization or capacity constant and controls the 

tradeoff between the amount of slack (error) tolerated in the formulation vs. the flatness (original 

objective) in the final estimation.   

The quadratic programming problem stated in Equation 3.20 is related to the “soft 

margin” loss function as stated in [23, 37].  The actual loss function itself, otherwise referred to 

as the -insensitive loss function, is defined in Equation 3.22 and illustrated in Figure 3.6.   

|𝜉| = {
0 if |𝜉| ≤ 𝜀

|𝜉| − 𝜀 otherwise
 (3.22) 

 

 

Figure 3.6:  Insensitive Loss Function 

From Figure 3.6, it is clearly seen that there is no loss, or penalty, for estimates that lie 

within the  error bound and the error outside the e error bound grows linearly.  There are many 

different kinds of loss functions that can be used to manage the error that may occur beyond the  
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error bound.  This research focuses on the  insensitive loss function as described above.  It is 

also the most prevalent loss function observed in the literature search for this research. 

We have now formulated what is referred to as the primal objective function and its 

associated linear constraints.  In general, solving this type of optimization problem in its present 

(primal) form can be challenging.  An alternative form of the optimization problem must be 

formulated.   

3.5   Dual Objective Function Formulation 

Solving the quadratic programming problem shown in Section 3.4 requires the use of 

Lagrange multipliers.  The Lagrange function L defined in Equation 3.23 is the sum of the primal 

objective function in Equation 3.20 and the negative sum of all the products between the 

constraints and corresponding Lagrange multipliers.   

𝐿 = 𝑔1 + 𝑔2 + 𝑔3 + 𝑔4 + 𝑔5 
 

(3.23) 

 

𝑔1 =
1

2
‖𝑤‖2 

 

(3.24) 

 

𝑔2 = 𝐶∑(𝜉𝑖 + 𝜉𝑖
∗)

𝑁

𝑖=1

 

 

(3.25) 

 

𝑔3 = −∑𝛽𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + 〈𝑤, 𝑥𝑖〉 + 𝑏)

𝑁

𝑖=1

 

 

(3.26) 

 

𝑔4 = −∑𝛽𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏)

𝑁

𝑖=1

 

 

(3.27) 

 

𝑔5 = −∑(𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖
∗)

𝑁

𝑖=1

 

 
 

(3.28) 

 

 

subject to: 𝛽𝑖, 𝛽𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗ ≥ 0  (3.29) 
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where L is the Lagrange function, N is the total number of data samples, 


 and 


 are the set 

of Lagrange multipliers, and w, x, y, b, , and C are all defined in the previous section.  Note 

that w, b, , and * are all considered primal variables. 

In order for an optimal solution to be found, the partial derivative of L with respect to 

each of the primal variables has to equal zero as shown in Equations 3.30, 3.31, and 3.32. 

𝜕𝐿

𝜕𝑤
= 𝑤 −∑(𝛽𝑖 − 𝛽𝑖

∗)

𝑁

𝑖=1

𝑥𝑖 = 0 

 

 

(3.30) 

 

 

𝜕𝐿

𝜕𝑏
=∑(𝛽𝑖

∗ − 𝛽𝑖)

𝑁

𝑖=1

= 0 

 

 

(3.31) 

 

 

𝜕𝐿

𝜕𝜉(∗)
= 𝐶 − 𝛽𝑖

(∗)
− 𝜂𝑖

(∗)
= 0 

 

(3.32) 

 

 

The next step is to substitute the findings in Equations 3.30, 3.31, and 3.32 into the 

Lagrange function L.  By combining all the terms in Equations 3.25 through 3.28 (g2 through g5) 

and applying the optimality point condition in Equation 3.32, all terms associated with 


 and 




 disappear in the Lagrange function.  The remaining terms are gathered along with Equation 

3.24 and restated as the dual objective function in Equation 3.33 along with the remaining 

constraints shown in Equation 3.34. 

maximize   ∑𝑦𝑖(𝛽𝑖 − 𝛽𝑖
∗)

𝑁

𝑖=1

− 𝜀∑(𝛽𝑖 + 𝛽𝑖
∗) −

1

2

𝑁

𝑖=1

∑∑(𝛽𝑖 − 𝛽𝑖
∗)(𝛽𝑗 − 𝛽𝑗

∗)

𝑁

𝑗=1

𝑁

𝑖=1

〈𝑥𝑖 , 𝑥𝑗〉 (3.33) 

 

subject to {
∑(𝛽𝑖 − 𝛽𝑖

∗) = 0

𝑁

𝑖=1

0 ≤ 𝛽𝑖, 𝛽𝑖
∗ ≤ 𝐶 

 
(3.34) 
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There are several important observations regarding the dual objective function 

formulation: 

 There are only one set of Lagrange multipliers remaining (


). 

 Both the bias term b and the weights w disappear in the dual optimization 

problem. 

 The sum of the Lagrange multipliers is equal to zero (Equation 3.34). 

In order for the dual objective formulation to be valid, the Karush-Kuhn-Tucker (KKT) 

constraints (see literature sited in Section 3.1) must hold.  Simply stated, the product of the 

Lagrange multipliers and the primal objective function constraints must equal zero.  Equation 

3.35 shows the KKT constraint for the time series estimate and error bound and Equation 3.36 

shows the KKT constraint for the slack variables (with a substitution for 


 from Equation 

3.32). 

𝛽𝑖
(∗)
(𝜀 + 𝜉𝑖

(∗)
∓ 𝑦𝑖 ± (〈𝑤, 𝑥𝑖〉 + 𝑏)) = 0 

 

 

(3.35) 

 

 

(𝐶 − 𝛽𝑖
(∗)
) 𝜉𝑖

(∗)
= 0 

 

 

(3.36) 

 

 

There are several additional observations regarding the dual optimization problem with 

regards to the KKT constraints: 

 The product of the Lagrange multipliers i and i* are zero as you cannot have 

two non-zero slack variables for the same data point simultaneously. 

 The value of the Lagrange multipliers at the optimal solution point is equal to the 

capacity term C. 

 Only data points that lie outside the e error bound have a corresponding Lagrange 

multiplier equal to C.  The remaining data points that lie within that bound have a 
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zero Lagrange multiplier value.  This means the SVR solution is sparse in the 

sense that not every data point is necessary to compute a solution.  The data points 

that are associated with nonzero Lagrange multipliers are known as support 

vectors. 

The partial derivative shown in Equation 3.30 leads to another important conclusion.  

Solving for w, we can now substitute Equation 3.30 into our original time series regression 

estimation Equation 3.8 and formulate the SVR time series estimation equation as shown in 

Equation 3.37. 

𝑓(𝑥) =∑(𝛽𝑖 − 𝛽𝑖
∗)

𝑁

𝑖=1

〈𝑥, 𝑥𝑖〉 + 𝑏 

 

 

(3.37) 

 

 

We can now represent an approximation to a time series with only the sample (training 

set) data points and the Lagrange multipliers found from the dual optimization problem (and a 

bias term b).  However, the formulation in Equation 3.37 is for a linear regression fit only.  For a 

non-linear curve fit, we can now use a kernel function as described in Section 3.3 by substituting 

Equation 3.13 into Equation 3.37 as shown in Equation 3.38. 

𝑓(𝑥) =∑(𝛽𝑖 − 𝛽𝑖
∗)

𝑁

𝑖=1

𝐾(𝑥, 𝑥𝑖) + 𝑏 

 

 

(3.38) 

 

 

Equation 3.38 is the general SVR formula for estimating any given non-linear time series.  

In addition, for the CMPSO formulation (to be discussed in Chapter 5), we would like to make a 

change of variables for the Lagrange multipliers as shown in Equation 3.39. 

𝛼𝑖 = 𝛽𝑖 − 𝛽𝑖
∗ (3.39) 
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Substituting the Kernel function found in Equation 3.38 and the change of variables in 

Equation 3.39 into the dual optimization objective function and constraints in Equations 3.33 and 

3.34 as well as the time series estimation Equation in 3.38, we now have the final version of the 

SVR formulation objective function (Equation 3.40), the associated constraints (Equation 3.41), 

and the SVR time series estimation function (Equation 3.42). 

maximize   ∑𝛼𝑖𝑦𝑖

𝑁

𝑖=1

− 𝜀∑|𝛼𝑖| −
1

2

𝑁

𝑖=1

∑∑𝛼𝑖𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 (3.40) 

 

subject to {
∑𝛼𝑖 = 0

𝑁

𝑖=1

−𝐶 ≤ 𝛼𝑖 ≤ 𝐶 

 

 

(3.41) 

𝑓(𝑥) =∑𝛼𝑖

𝑁

𝑖=1

𝐾(𝑥, 𝑥𝑖) + 𝑏 (3.42) 

 

3.6   SVR Optimality, Architecture and Free Variables 

Now that we have defined both the primal and dual objective functions for SVR, we must 

solve the dual objective function by finding a set of Lagrange multipliers such that the objective 

function is maximized subject to its constraints.  The condition of optimality for the SVR 

problem can be found by finding the difference in the primal and dual objective function outputs, 

otherwise known as the feasibility gap.  For optimality, the feasibility gap is equal to zero as the 

primal and dual optimization problems converge to the same optimal point.  Equation 3.43 shows 

a typical calculation of this gap (this is sometimes referred to as the duality gap, which will be 

referred to with the variable ).  

Duality Gap = 
Primal Objective - Dual Objective

|Primal Objective| + 1
= 𝛾 (3.43) 
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The calculation of the primal objective value in Equation 3.43 can be derived by adding 

the last term in Equation 3.30 to the  slack values calculated by finding difference between the 

actual data (training) point y plus the  bound and the estimate f(x).  Other computational 

strategies exist, including specific implementation alternatives that can be used to find the 

optimal point.  Regardless of implementation, the optimization problem is solved when the 

primal and dual objective functions approach the same value. 

A suitable duality gap value associated with the calculation in Equation 3.43 is typically 

0.001; however in Chapters 5 and 6 we show that the duality gap, in a more practical sense, can 

depend on the user’s requirements and can be somewhat higher than this suggested value.  The 

topic of techniques for finding optimal solutions, also known as quadratic program (QP) solvers, 

will be discussed later in Chapter 5.   

The construct of the SVR is shown in Figure 3.7.  A training data set is necessary to pass 

through the QP process in order to estimate the Lagrange multipliers, also noting that a specific 

Kernel function must be selected along with its user defined parameters.  Once the Lagrange 

multipliers are found along with the bias term b, the support vectors are identified based on the 

values of the Lagrange multipliers, passed through the same kernel function used in training, and 

finally weighted by the Lagrange multipliers to estimate any arbitrary data point.   

Table 3.1 summarizes the SVR formulation and identifies the data and processes shown 

in the SVR Architecture in Figure 3.7. 

The challenge with implementing SVR is the determination of the three user defined 

variables , C, and .  The focus of this research is to find an efficient method to determine these 

values for any arbitrary non-linear time series application. 
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Figure 3.7: SVR Architecture  
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Table 3.1: A Summary of SVR Parameters, Processes and Functionality 

Data or Process Functionality Notes 

Training Set Used to train the SVR Defined as N real valued pairs (x,y). 

Kernel Function Project the data into 

feature space 

User must define function type and 

associated parameters.  For this research, 

the radial basis function (exponential 

function) is used. 

QP Solver A process that will solve 

the SVR dual objective 

function 

User must define the capacity term C and 

the error bound .  Many different types of 

QP solvers exist. 

Lagrange Multipliers Used to weight the 

output of the kernel 

function to estimate a 

real valued function. 

Lagrange multipliers are found by the QP 

process and there are typically M non zero 

values where M < N.  There is one 

nonzero Lagrange multiplier for each 

support vector. 

Bias Term An offset applied to the 

final time series 

estimate. 

Can be computed in different ways; 

usually estimated to minimize the error 

between estimate and truth. 

Support Vectors A subset of the training 

data that have associated 

nonzero valued 

Lagrange multipliers. 

Used to compute the estimate of f(x) for 

any arbitrary real valued point x. 

User Defined 

Parameters , C, and  

Free variables required 

to be selected by the 

user for any given 

application 

Necessary to “tune” the SVR algorithm 

and its associated kernel function. 
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CHAPTER 4: PARTICLE SWARM OPTIMIZATION 

 

4.1   SVR Parameter Optimization 

As shown in Chapter 3, SVR is a viable time series prediction and regression algorithm 

that has many significant attributes.  As with most time series prediction algorithms, there are 

usually challenges associated with tuning an algorithm to make it effective for any given 

application.  SVR also has challenges in how it is tuned.  As stated at the end of Chapter 3, SVR 

relies on the user to define a set of parameters, sometimes referred to as free variables, in order to 

work.  For the purposes of this research, we are focusing specifically on the error bound , the 

capacity term C, and the radial basis function parameter .  Note that we have selected a specific 

kernel function, the radial basis function, for this research.  The optimization problem can get 

more difficult if another kernel function is used as more parameters may be necessary to tune.  

The problem of finding an optimal set of these parameters has been a subject of much research 

and it should be noted that no one heuristic has been identified.  It should also be noted that the 

QP solver used to find the Lagrange multipliers (shown in Figure 3.7) is essentially an 

optimization problem as well.  The QP program solves for the dual objective function subject to 

its constraints. 

Finding the optimal set of SVR user selectable parameters (free variables) is a 

mathematical optimization problem.  The general form of this optimization is given in Equation 

4.1 [124].  
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maximize (or minimize)   𝑓(𝒙)

subject to: 

{
 
 

 
 
𝒂𝑇𝒙 ≥ 𝑏𝑖, 𝑖 ∈ 𝑀1
𝒂𝑇𝒙 ≤ 𝑏𝑖, 𝑖 ∈ 𝑀2
𝒂𝑇𝒙 = 𝑏𝑖, 𝑖 ∈ 𝑀3
𝑥𝑗 ≥ 0, 𝑖 ∈ 𝑀4
𝑥𝑗 ≤ 0, 𝑖 ∈ 𝑀5

 (4.1) 

 

Equation 4.1 is an example of an optimization problem with linear constraints.  The 

variables [x1, …, xM] are called decision variables.  There are M total variables, each divided in 

to five subsets M1 through M5.  The vector a contains linear multipliers for the decision 

variables.  The function f(x) is said to be a cost or objective function.  A vector x* that satisfies 

all of the constraints and maximizes (or minimizes) the objective function is said to be a feasible 

solution.  It should be noted that the primal and dual examples in the previous chapter are said to 

be convex as they are quadratic in nature. 

Given the definition above, we would now like to formulate an optimization problem for 

the SVR free parameters.  We have already identified the three variables we would like to 

optimize: , C and .  Note this formulation assumes a radial basis kernel function as there is 

only one parameter () associated with that function.  In addition, we also need to solve for the 

Lagrange multipliers as well as the bias term b to complete the SVR solution.  Given a training 

set y of real valued numbers, we would like to find an estimate f(x) for any real valued number x 

using the SVR formulation.  The SVR formulation is found by minimizing the duality gap  

defined in Equation 3.43.  Equation 4.2 is the formulation of the optimization problem we are 

trying to solve along with it constraints in Equation 4.3. 

 

minimize  ℎ(𝑓(𝒙), 𝒚)   (4.2) 
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subject to: 

{
 
 
 

 
 
 

𝛾 ≤ 0.001

∑𝛼𝑖 = 0

𝑁

𝑖=1

, 𝑁 > 0

−𝐶 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ 𝑁
𝜀 > 0
𝐶 > 0
𝜎 > 0

 

 

 

 

(4.3) 

 

The variable  is the duality gap defined in Equation 4.42.  The Lagrange multipliers 

defined in Chapter 3 are denoted as the vector  (one for each training set sample).  The vector x 

represents the N independent variables (time in this case) and the y vector represents the 

corresponding N training (dependent) values respectively.  The objective function h(.) is the 

optimization objective function that needs to be defined.  Its purpose is to evaluate the estimate 

f(x) generated by the SVR process against the actual training values y.  The formulation of h(.) 

will be discussed further in Chapter 5. 

4.2   Introduction to Particle Swarm Optimization 

Equations 4.2 and 4.3 are the formulation of the objective function and its associated 

constraints for finding the SVR user defined parameters for any arbitrary time series.  The 

optimization process selected for this research is Particle Swarm Optimization (PSO). 

First developed by Kennedy and Eberhart ([4] through [8]) in 1995, PSO mimics the real 

life process of a swarm of animals or insects searching for food.  The goal for each individual of 

the swarm, where each individual is termed a "particle", is to scavenge in a pre-defined search 

region for the place that has the most food.  Each particle has no prior knowledge of the amount 

of food in any given location in the search region.  As a particle travels through the search 

region, each will remember the location in their search region where they have found the highest 

density of food and the entire swarm will remember collectively where the highest density of 

food was found in the areas that have been searched.  As time passes, the particles move through 
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the search region remembering where they have found the most food and where the swarm has 

found the most food collectively.  Each particle is driven by three motivational forces: 1) the 

current direction they are traveling, 2) the location where the individual particle has found the 

most food, and 3) the location where the group has collectively found the most food.  These three 

motivational forces are also modified by a “wandering” factor.  This factor mimics the real world 

behavior of animals or insects, meaning that particles do not exactly vector towards the exact 

locations of their individual or collective findings.  There is some randomness to their motion in 

time.  Eventually, the collection of particles, or “swarm”, will all eventually gravitate to some 

location where the most food has been found. 

This optimization process has been shown to outperform other optimization methods 

such as genetic algorithms [10].  In addition, this technology in general has been shown to be 

more efficient to implement as compared to genetic or evolutionary optimizers [10, 11].  The 

ease of implementation is one of the highlighted attributes in using this specific algorithm.  The 

following PSO formulation is based on the previously stated references in this section along with 

the work found in [9, 11, and 125].   

4.3   Particle Swarm Optimization Terminology 

PSO has a specific set of terminology and definitions that are somewhat unique to this 

optimization process.  This section outlines the terminology and definitions that will be used 

throughout the dissertation. 

The first definition is the particle.  It represents the individual representation of a point in 

the search space.  It is defined by its location and direction of motion, both in position and 

velocity.  It also has a memory function, as each particle remembers the location where it found 
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the most food and it also remembers the location where the entire swarm has found the most 

food.  The collection of the entire set of particles is called the swarm. 

Position is defined as a particle’s location in space.  Unlike a bird or insect real world 

representation of position in a three dimensional space, a particle’s position can be N 

dimensional.  The particle’s velocity is also defined in the same N dimensional space and can be 

limited by a user defined bound. 

As mentioned with the particle definition is the memory function which is used to store 

the location of the most food found by the individual particle and the swarm.  The term used for 

the location of the place where the particle found the most food is referred to as the particle’s 

“personal best”, “particle best”, or more commonly pbest for short.  The term used for the 

location of the place where the entire swarm has found the most food is referred to as the “global 

best”, or gbest for short. 

As in the real world, animals and insects are usually limited to a certain region where 

they can search for food.  PSO has similar constraints for the particles.  As the particles move 

through space, eventually they will reach a boundary of their search region.  The PSO algorithm 

has different associated methods by which to manage these situations and is discussed further in 

Section 4.5. 

4.4   Particle Swarm Optimization Algorithm 

Given the above description of PSO and its associated functions and processes, the goal 

in this section is to define the PSO algorithm and tailor it to the SVR time series regression 

problem and SVR free variable selection. 

The first step in the PSO algorithm definition process is to define the solution space.  

This is analogous to defining a physical region for a swarm of birds or insects to hunt for food.  
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The individual particle parameter definitions and boundary limits that define the solution space 

for this problem are given in Table 4.1. 

Table 4.1: PSO Particle Definitions and Solution Space Boundaries 

Particle Parameter Definition Parameter Bounds 

Error Bound  The amount of error tolerated by the SVR 

time series estimation process. 

𝜀 ∈ ℝ
0 < 𝜀 ≤ 𝜀𝑚𝑎𝑥

 

Capacity Term C A user defined variable that balances the 

flatness of the estimating function and the 

amount of error beyond the error bound to 

tolerate. 

 

𝐶 ∈ ℝ
0 < 𝐶 ≤ 𝐶𝑚𝑎𝑥

 

Radial Basis Kernel 

Function Parameter 

 

A user defined variable that will adjust the 

projection of the sample time series into 

feature space via the kernel function. 

 

𝜎 ∈ ℝ
0 < 𝜎 ≤ 𝜎𝑚𝑎𝑥

 

Lagrange Multipliers  

[1, …N] 

 

The Lagrange multipliers are used to 

weight the support vectors to produce an 

estimate of a time series function.  There 

is one Lagrange multiplier for each data 

point in the training set (total of N points). 

 

𝛼𝑖 ∈ ℝ
−𝐶 ≤ 𝛼𝑖 ≤ 𝐶

 

Bias Term b The amount of offset between the 

estimated function and the training set 

values. 

 

𝑏 ∈ ℝ
−𝑏𝑚𝑎𝑥 ≤ 𝑏 ≤ 𝑏𝑚𝑎𝑥

 

 

As can be seen, the solution space boundaries are given in Table 4.1 in the “Parameter 

Bound” column.  There are a total of N+4 parameters that define a particle’s solution space, 

where N is the number of training samples for a given time series data set. The actual bound 

limits that will be used in implementation will be discussed in Chapter 5. 

The next step in the PSO algorithm development process is the definition of the PSO 

fitness function.  This was defined in Equation 4.2 as h(f(x),y), with the underlying assumption 

that this function would produce a single real value that would give some measure of “goodness” 
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between the estimated value f(x) and the actual training set y.  Also recall the necessary process 

to complete the SVR optimization shown in Chapter 3 that an optimization had to be completed 

and a duality limit  needed to be achieved as seen in Equation 3.43.  It now appears that there 

are more than one set of objectives to be met for this particular problem.  These types of 

problems with multiple objectives using PSO are often referred to as Multiple Objective Particle 

Swarm Optimization (MOPSO). 

MOPSO is a candidate technique that can be considered for this application since more 

than one "fitness" criteria is required.  A survey of MOPSOs can be found in [126] along with 

their implementations and applications.  Reference [127] also details the use of MOPSOs and 

qualitative performance results associated with applications with more than one fitness criteria.  

Many of the MOPSO techniques reviewed and referenced above were considered for solving this 

specific PSO/SVR problem. However, the solution of the SVR optimization problem is 

dependent on , C, and , making the MOPSO techniques cited difficult to implement for this 

type of problem.  A further discussion of the PSO fitness function formulation will be presented 

in Chapter 4 specifically tailored for the SVR optimization problem. 

The next step in defining the PSO algorithm is to select the total number of particles to 

use and initialize the position and velocity of the particles in solution space.  Typically the total 

number of particles is a function of the performance of the computing hardware available for 

solving the specific problem.  The initial position of any given particle for each dimension (N+4 

in this case) is done by selecting a random point for each of the parameters (dimensions) detailed 

in Table 4.1.  The value of the initial positions parameters is a uniformly distributed random 

number scaled by the boundary limit of each parameter.  Equations 4.4 and 4.5 are the 

representations of the particle’s position and velocity respectively as this notation will be used 
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throughout the dissertation.  Equations 4.6 through 4.10 show the initial position calculations for 

each particle parameter, with each particle denoted by the index k. 

particle position: 𝑝𝑘(𝜀,𝐶,𝜎,𝛼1…𝛼𝑁,𝑏) 

 
(4.4) 

 
particle velocity: 𝑣𝑘(𝜀,𝐶,𝜎,𝛼1…𝛼𝑁,𝑏) 

 

(4.5) 

𝑝𝑘,0(𝜀) = 𝜀𝑚𝑎𝑥 ∗ 𝑟𝑎𝑛𝑑 

 
(4.6) 

𝑝𝑘,0(𝐶) = 2 ∗ 𝐶𝑚𝑎𝑥 ∗ 𝑟𝑎𝑛𝑑 − 1 

 
(4.7) 

𝑝𝑘,0(𝜎) = 𝜎𝑚𝑎𝑥 ∗ 𝑟𝑎𝑛𝑑 

 
(4.8) 

𝑝𝑘,0(𝛼𝑖) = 2 ∗ 𝐶𝑚𝑎𝑥 ∗ 𝑟𝑎𝑛𝑑 − 1 

 

(4.9) 

𝑝𝑘,0(𝑏) = 2 ∗ 𝑏𝑚𝑎𝑥 ∗ 𝑟𝑎𝑛𝑑 − 1 

 
(4.10) 

The function “rand” is a uniform random number generator that produces real numbers 

between zero and one inclusive.  Each instance of “rand” produces an independent and 

identically distributed (iid) random number.  For convenience, we have shortened the particle 

(and velocity) notation to identify only the dimension of the particle of interest.  Also, we 

introduced the zero subscript to indicate the number is the initial value.  As seen in Equations 3.6 

through 3.10, the initial particle location is within the search boundaries. 

Using the same notation in Equations 4.4 through 4.10, a similar process is used to 

initiate the particle velocities as shown in Equation 4.11. 

𝑣𝑘,0(𝑧) = 𝛿𝑧𝑓𝑧(𝑝𝑘,0(𝑧)) 

 
(4.11) 

The initial velocity calculations for each dimension uses the exact same random value 

generation process shown in Equations 4.6 through 4.10, represented by the fz(.) function in 4.11.  

The variable z represents any of the PSO parameters.  The factor z is used to scale the value of 

the random number generated for each parameter and will generally be less than one.  More 
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details regarding the selection of the bounds and velocity scale factor will be discussed in 

Chapter 5. 

At this point every particle has been given and initial position and velocity.  Before the 

particle can move through solution space, the pbest values for each particle need to be calculated.  

This is done by evaluating the fitness function h(f(x),y) defined in Equation 4.2.  The pbest value 

scores are stored for each particle as well as the position where pbest was found.  The highest 

value of all the pbest values is then selected to be the gbest value as well as the location where 

gbest was found.  Again, location is defined as the value of the PSO parameters where the pbest 

and gbest values were identified. 

For notation, we would like to define Ns as the total number of time series samples in any 

given time series training set and Np as the total number of particles in the PSO process.  We 

have now evaluated the fitness function for each particle and have selected the best result (gbest).  

Equation 4.2 defined the fitness function objective as a minimization.  In practice, there must be 

some practical limit to be obtained in order to find a stopping point for the PSO process.  If the 

gbest value is found to less than some optimal number, the PSO process will end.  If a limit is not 

reached, then the particles must move in order to find a better fitness function value. 

The motion of the particles through solution space is analogous to the physical motion of 

birds or insects through physical space.  The general equation of particle motion is defined in 

Equation 4.12. 

𝑝𝑘,𝑗+1 = 𝑝𝑘,𝑗 + Δ𝑡𝑣𝑘,𝑗  

 
(4.12) 

For convenience we have dropped the (z) notation with the understanding that each 

particle’s (indexed by k) new position at step j+1 is dependent on the same particle parameter at 

the previous step j plus the velocity term of the same parameter multiplied by a time factor t.  
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This is the basic physical world representation of a constant velocity equation of motion.  The 

time factor t should not be confused with the time series x independent variable as stated in the 

regression formulation in Chapter 3.  PSO defines the factor t to be unity.  It should be noted 

that the notation j refers to each step in an iterative process, where each step is referred to as an 

epoch. 

Equation 4.12 is the equation of motion that is used to update the position of every 

particle in the swarm.  The particles will move through solution space until some minimum value 

of the fitness function is found.  For every epoch, the fitness function will be evaluated for every 

particle and if a better value for the fitness function is found for any individual particle, its pbest 

will be updated and stored.  Also at every epoch, the best pbest score of all the particles will be 

compared to the stored gbest value.  If a better pbest value is found, the current gbest location 

and value will be updated and stored.   

After the evaluation of pbest and gbest at every epoch, the velocity of each individual 

particle will need to be updated in order to continue moving through solution space.  Equations 

4.13 through 4.16 are the update functions for the particle velocity. 

𝑣𝑘,𝑗+1 = 𝑚1𝑔1 +𝑚2𝑔2+𝑚3𝑔3 

 

(4.13) 

𝑔1 = 𝑣𝑘,𝑗 

 
(4.14) 

𝑔2 = 𝑟𝑎𝑛𝑑 ∗ (𝑝𝑏𝑒𝑠𝑡𝑘,𝑗 − 𝑝𝑘,𝑗) 

 

(4.15) 

𝑔3 = 𝑟𝑎𝑛𝑑 ∗ (𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑝𝑘,𝑗) 

 

(4.16) 

𝑚1,𝑚2, 𝑚3 ∈ ℝ,𝑚1,𝑚2, 𝑚3 > 0 
 

(4.17) 

A particles’ velocity defined in Equation 4.13 for any given epoch is the weighted sum of 

three “forces” acting on the particle.  The first term, expressed in Equation 4.14, is referred to as 

the inertial term with its associated inertial weight m1.  This term forces the particle to go in the 
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same direction it was travelling in the previous epoch, as related to inertia in the physical sense.  

The second term, expressed in Equation 4.15, is referred to as the cognitive term with its 

associated cognitive weight m2.  This term forces the particle in the direction where the particle’s 

pbest location was found, as related to a cognitive decision by an individual bird or insect.  The 

last term, expressed in Equation 4.16, is referred to as the social term with its associated social 

weight m3. This term forces the particle in the direction where the swarm’s gbest location was 

found, as related to the social swarm locating the best location in the searched area. 

The three weights m1, m2, and m3 are identified in Equation 4.17 and are generally user 

defined.  It should be noted that there is no single heuristic to determine these three values, 

although the referenced literature makes some suggestions regarding recommended values.  It is 

also clear that the ratio of these weights relative to each other will change the behavior of the 

particle as it moves through space.   

One real world analogy associated with setting the three weights could be expressed as a 

definition of a particles “personality”.  A high inertial weight along with lower cognitive and 

social weights would tend to make the particle “stubborn” and not tend to be influenced by its 

own experience or the experience of the swarm.  Another example would be a high cognitive 

weight with lower inertial and social weights, making the particle appear to be “selfish” or 

“independent” in the sense it is only worried about the maximum fitness function location for 

itself.  The last analogy would be one where the social weight is higher than both the inertial and 

cognitive weights, making the particle tend to be more “social” or “dependent” as it will tend to 

be more influenced by all the other particles and tend to the location where the swarm has found 

the best fitness function.  The study of determining an optimal set of weights along with their 

classifications is a subject for further research.  
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Figure 4.1 is a general view of one particle moving through a two dimensional space. 

 

Figure 4.1: Particle Motion Through Solution Space 

As seen in the two dimensional example in Figure 4.1, the particle (shown as the blue 

point) is being moved by three forces: 1) the inertial force (black vector), 2) cognitive force 

(green vector), and 3) the social force (red vector).  The particle’s position at the next epoch will 

result from the vector sum of those three forces for every parameter (NS+4 dimensions in this 

PSO formulation). 

Another important aspect of the PSO algorithm formulation is the use of the “rand” 

functions in the cognitive and social “force” Equations in 4.15 and 4.16.  Again, the rand 

function is a uniformly distributed iid function that produces a random value [0, 1].  The rand 

function produces two separate values for each term and two new random numbers for every 

epoch.  The purpose of this factor is to mimic the real world “wandering” behavior of birds and 

insects while they are attempting to find the location with the best fitness function.  This adds an 

additional weighting factor to those terms and forces the particle to move in a random fashion 

towards its pbest and the swarm’s gbest value. 
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Figure 4.2 illustrates the general PSO algorithm process. 

 

Figure 4.2: General PSO Optimization Process 

The last part of the optimization described in the next section deals with the case when a 

particle travels outside the solution space boundary for any given PSO parameter. 

4.5   PSO Boundary Conditions 

There are times when a particle’s trajectory can force the particle outside any given 

boundary of the Ns+4 PSO parameters (the solution space).  There are several different methods 

available to handle these conditions for PSO. 

The first method for handling a boundary condition violation is called an “absorbing 

wall”.  In this case when any given dimension of the particle exceeds the upper or lower bound, 
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the velocity related to that dimension is set to zero.  This technique mimics the particle traveling 

along the bound of that parameter, or being “absorbed” by the wall.  In this case, the only forces 

acting on future movements of the particle are due only to the cognitive and social forces, which 

should eventually pull the particle back to the defined search space.  There may be an issue, in 

general, in trying to evaluate the fitness function for parameters outside the solution space.  

Using this technique will depend on the application and more specifically the fitness function 

calculation’s tolerance to parameter values outside their defined bounds.  If necessary, the 

parameter that exceeds the boundary value can be set to the boundary value, making for a more 

representative “absorption” of the boundary wall.  It should be noted that this technique 

modification was not explicitly mentioned in the researched literature. 

The next technique considered for PSO boundary violation is called “reflecting walls”.  

When a particle exceeds its upper or lower boundary, the sign of the velocity for that parameter 

is reversed.  This mimics the physical action of a ball bouncing off a wall.  In this case, the 

particle’s parameter that was out of bounds should return inside the boundary limit. 

The last technique considered is called “invisible” walls.  In this case when a particle’s 

parameter exceeds the boundary limit, the velocity (of any parameter) is unchanged and the 

particle is allowed to pass through the boundary.  The key aspect of this technique is the fact that 

the fitness function is not evaluated when any of the PSO parameters exceed their defined 

bounds.  This will save on computation resources.  Since there is no fitness evaluation, pbest will 

not be updated for the particle.  Similar to the absorbing walls technique, the particle is expected 

to be pulled back into the solution space by the cognitive and social forces. 
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Table 4.2 illustrates the advantages and challenges associated with each of the three 

boundary condition techniques and Figure 3.3 illustrates the particle behavior when the 

parameter boundaries are exceeded. 

Table 4.2: PSO Boundary Condition Advantages and Challenges 

Boundary 

Condition 

Technique 

 

Advantages 

 

Challenges 

Absorbing Wall  Particle will not (necessarily) leave 

the solution space, making each 

evaluated pbest, gbest feasible. 

 

 Condition evaluation for changing 

velocity and technique 

implementation are simple. 

 Evaluation of fitness function while particle 

parameter is outside the boundary may not be 

possible. 

 

 Time (number of epochs) required for particle 

to reenter the solution space may be 

considerable depending on the weighting 

factors m1,2,3.  Also need to consider the case 

when (if) gbest is selected outside the solution 

space. 

Reflecting Wall  Particle will (should) only leave the 

solution space for one epoch 

 

 Condition evaluation and change of 

velocity sign simple to implement 

and evaluate. 

 Evaluation of fitness function while particle 

parameter is outside the boundary for at least 

one epoch may not be possible. 

 

 When the particle is outside the boundary, the 

total number of swarm particles is decreased 

and the number of potential contributors to the 

gbest estimation is reduced (efficiency 

penalty). 

 

 Time (number of epochs) required for particle 

to reenter the solution space may be 

considerable depending on the weighting 

factors m1,2,3 and if a true “absorption” of that 

parameter to the boundary is not implemented.  

Also need to consider the case when (if) gbest 

is selected outside the solution space. 

Invisible Wall   There is only one test to evaluate if 

the particle is outside the boundary; 

no necessary updates (calculations) 

to velocity or position. 

 

 Increase in computational 

efficiency as the fitness function 

will not be evaluated unless all the 

particle’s parameters are within 

their bounds. 

 Time (number of epochs) required for particle 

to reenter the solution space may be 

considerable depending on the weighting 

factors m1,2,3.   

 

 When the particle is outside the boundary, the 

total number of swarm particles is decreased 

and the number of potential contributors to the 

gbest estimation is reduced (efficiency 

penalty). 
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Figure 4.3: PSO Boundary Condition Illustration 

As can be seen in the two dimensional example in Figure 4.3, the red points illustrate the 

absorbing wall technique as the motion of the particle is being absorbed into the lower bound of 

parameter B.  The green points illustrate the reflecting wall technique as the boundary of 

parameter A is reached the velocity of the particle in that dimension is reversed.  Finally the blue 

points illustrate the invisible wall technique where the particle is allowed to violate the lower 

bound of parameter B but once outside this boundary, the fitness function is not update and 

consequently the pbest (and possibly gbest) values are not updated. 

4.6   Parameter Selection 

The PSO algorithm described in the previous section requires the definition of three 

specific parameters: 1) inertial weight, m1, 2) cognitive weight, m2, and 3) social weight, m3.  

These are user defined parameters and may be application dependent as noted in researched 

literature. 

For the purposes of this study, the initial m1 weight is set to 0.75 (approximate value of 

recommended settings in literature).  However, in adapting the other two weights m2 and m3, it 
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was discovered for the CMPSO implementation that the recommended values above 1.0 resulted 

in the PSO algorithm not converging for the examples studied.  The values for m2 and m3 are set 

to 0.75 and 0.25 respectively for the CMPSO implementation described in Chapter 5 based on 

similar convergence issues and observations.   

The process of selecting the three weights is further complicated by the setting of the 

initial particle velocity.  If the weights are too large, the second epoch of the PSO algorithm 

iteration (the first movement of the particles) could have the particles fly outside many if not all 

of the PSO parameter boundaries.  This may require more epochs for the velocities to “settle” to 

reasonable values that maintain the particles’ position in the solution space.  Another factor in 

setting the weights is the computational power and efficiency of the computing platform.  If a 

suitable computing environment is available, the sensitivity of these settings becomes less 

important as long as at some point the PSO algorithm converges.  Again, it is user and 

application specific. 

In summary, an “optimal” set of PSO parameters would require a completely different 

optimization formulation and could potentially be biased towards any one application.  It is clear 

that this is a further research topic. 
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CHAPTER 5: CONSTRAINED MOTION PARTICLE SWARM OPTIMIZATION 

 

5.1   Motivation and Objectives 

We have now formulated the SVR solution for time series estimation and regression 

outlined in Chapter 3, noting that there are Ns+4 SVR specific parameters to optimize and three 

of those parameters are user defined with no given solution heuristic.  In Chapter 4 we have 

suggested an optimization algorithm, PSO, to be used to find all these parameters. 

There are many challenges associated with using PSO to optimize SVR parameters.  First 

is defining the PSO fitness function in Equation 4.2 along with the requirement to minimize the 

duality gap  defined in Equation 3.43 for SVR optimization.  This would suggest a MOPSO 

based approached suggested in Section 4.4.  

Alternative PSO approaches not based on multiple objectives have been proposed for 

SVR free parameter (, C, and ) estimation.  Hong [128] proposed the use of Chaotic PSO in 

use with SVR for electrical load forecasting.  The technique uses a parallel approach in applying 

PSO to find the SVR free parameters, but the technique still requires an SVR solution algorithm 

for the QP problem.  Guo et al. [129] uses PSO for finding the free parameters for a Least 

Squares Support Vector Machine (LS-SVM) application using medical related data for 

benchmarking (note that this application was specifically for hyper-parameter selection for SVM 

classification, not SVR based regression). 

Other PSO related applications involving SVR and linear constraint problems have been 

studied.  Yuan et al. [130] introduced a modified PSO algorithm for SVM training based on 
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linearly-constrained optimization using PSO and techniques proposed by Paquest and 

Engelbrecht [125, 131].  The method presented by Yuan, the "Modified Linear PSO - MLPSO", 

initializes the Lagrange multipliers randomly, but relies on re-initialization of the Lagrange 

multipliers should they go beyond the capacity value boundary C.  The focus of the research in 

these citations is a PSO applied process for solving linearly constrained optimization problems. 

None of the cited research offers a solution that will find a candidate solution for the PSO 

fitness function while optimizing the SVR objective function simultaneously.  Note the SVR 

objective function solution also requires certain constraints to be met as shown in Equation 3.41.  

In addition, the cited references are generally tuned to a given application, which in general can 

be a limitation as different applications may require different implementations and setups of any 

given candidate solution. 

We would now like to formulate a general solution for any given time series prediction 

and regression problem that will meet the functional objectives outlined in Table 5.1.  Meeting 

all of the stated objectives in Table 5.1 would be advantageous as a general time series 

regression and estimation framework could be employed for any application.  However, the 

development of such an optimizer will require some modifications to the given SVR and PSO 

formulations. 

5.2   Support Vector Regression Dual Objective Function Reformulation 

The first step in meeting the objectives stated in Table 5.1 is to reformulate the SVR dual 

optimization problem presented in Chapter 3, Equations 3.40 and 3.41 which are restated in 

Equations 5.1 and 5.2, respectively.  Additionally, the associated Lagrange multiplier initial 

limits shown in Equation 4.9 are restated in Equation 5.3. 

maximize   ∑𝛼𝑖𝑦𝑖

𝑁𝑆

𝑖=1

− 𝜀∑|𝛼𝑖| −
1

2

𝑁𝑆

𝑖=1

∑∑𝛼𝑖𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗)

𝑁𝑆

𝑗=1

𝑁𝑆

𝑖=1

 (5.1) 
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subject to { ∑𝛼𝑖 = 0

𝑁𝑆

𝑖=1

−𝐶 ≤ 𝛼𝑖 ≤ 𝐶 

 

 

(5.2) 

𝑝𝑘,0(𝛼𝑖) = 2 ∗ 𝐶𝑚𝑎𝑥 ∗ 𝑟𝑎𝑛𝑑 − 1 (5.3) 

 

Table 5.1: General Time Series Regression and Estimation Functional Objectives 

Objectives Details Notes 

SVR Based 

Regression and 

Estimation 

The basis of the general 

formulation will include SVR 

as the regression and 

estimation engine. 

SVR requires, at a minimum, an 

optimization routine that will solve for 

the Lagrange multipliers and bias value.  

In addition, SVR free variables will have 

to be selected.  

PSO Based 

Optimization 

PSO will be used to, at a 

minimum, find an optimal set 

of SVR free variables. 

PSO requires the definition of a fitness 

function as well as a method to handle 

parameter boundary violations.  

Limited QP Use  Some form of QP solver will 

be necessary to find the 

Lagrange multipliers and bias 

term b for the SVR 

formulation. 

A modified version of SMO can be used 

to solve the SVR problem.  However, the 

use of this solver will be computationally 

expensive if every Lagrange multiplier 

and bias term needs to be calculated for 

every particle over every epoch. 

Radial Basis 

Kernel Function 

Use 

Selected based on general use 

in many applications. 

Radial Basis Kernel functions only 

require one parameter to be tuned 

(typically user defined). 

Adaptability Any given two dimensional 

time series can be estimated 

regardless of scaling. 

This will require a scaling of the sample 

data and a general solver to operate in the 

scaled space.   

 

We now have a clear problem in bounding the Lagrange multiplier limits as they are 

dependent on the regularization parameter C.  This means the candidate Lagrange multipliers 

solution space could contract or expand as a function of C for every particle over every epoch, 

which would be infeasible to implement. 
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The PSO framework described in Chapter 4 further requires that each PSO parameter 

have fixed boundary values.  This can be achieved by scaling the dual objective function by the 

constant C (noting that C > 0) as well as scaling the constraint equations.  The reformulation of 

the SVR dual objective function, its associated constraints, and particle initialization for the 

parameter are given in Equations 5.4 through 5.6, respectively. 

maximize   𝐶 (∑𝛼𝑖𝑦𝑖

𝑁𝑆

𝑖=1

− 𝜀∑|𝛼𝑖| −
𝐶

2

𝑁𝑆

𝑖=1

∑∑𝛼𝑖𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗)

𝑁𝑆

𝑗=1

𝑁𝑆

𝑖=1

) (5.4) 

 

subject to { ∑𝛼𝑖 = 0

𝑁𝑆

𝑖=1

−1 ≤ 𝛼𝑖 ≤ 1 

 

 

(5.5) 

𝑝𝑘,0(𝛼𝑖) = 2 ∗ 𝑟𝑎𝑛𝑑 − 1 (5.6) 

 

Although the reformulated dual objective function in Equation 5.4 has an outer scale 

factor C that would not affect a maximum value solution, it will be necessary to use in finding 

the duality gap  defined in Equation 3.43, thus it is kept in Equation 5.4 for completeness.  Also 

noted is the second constraint in Equation 5.5.  The Lagrange multipliers are now bounded by 

fixed values of +/- 1.  Subsequently, the initialization of the Lagrange multipliers shown in 

Equation 5.6 is no longer dependent on any other PSO parameter.  All of the PSO parameters are 

now independent based on the SVR dual objective function reformulation.  

Based on this reformulation, the SVR estimation function in Equation 3.42 is now 

restated in Equation 5.7 with the appropriate scale factor.   

𝑓(𝑥) = 𝐶∑𝛼𝑖

𝑁

𝑖=1

𝐾(𝑥, 𝑥𝑖) + 𝑏 (5.7) 

 

This formulation allows the use of PSO to solve for the required parameters. 
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5.3   Particle Initialization and Constrained Motion  

We now have a way to set up the PSO parameter bounds to fixed values due to the 

reformulation of the dual objective function as shown in Equation 5.4.  The initialization 

equations given in Equations 4.6 through 4.10, with the substitution of Equation 5.6 for Equation 

4.9, now define the initial positions and velocities for each of the particles.  However, there is 

another constraint that must be held in Equation 5.5 which states the sum of the Lagrange 

multipliers must equal zero in order to have a feasible solution for the SVR dual objective 

function.  The Lagrange multiplier initialization given in Equation 5.6 does not account for this 

constraint. 

One option is to leave the Lagrange multiplier initialization as is and define a bound for 

the sum of the Lagrange multipliers as shown in Equation 5.8. 

 

|∑𝛼𝑖

𝑁𝑆

𝑖=1

| ≤ 𝑟 

 

(5.8) 

The problem with this formulation is that there is the introduction of yet another 

optimization parameter r and the actual estimation of the time series may not be optimal 

depending on this (possibly user defined) value.  One would like to minimize the number of 

parameters to optimize as well as maintain the PSO formulation stated in Chapter 4 without 

adding additional computational complexity. 

One way to solve this issue is to initialize the particles’ position and velocity for the 

Lagrange multiplier parameters such that the Lagrange multiplier zero summation constraint is 

satisfied.  This can be done by initializing NS-1 particles’ Lagrange multiplier positions and 

velocities as stated in Equation 5.6.  The identification of the NS-1 Lagrange multipliers to be set 

is randomly selected as well.  The remaining Lagrange multiplier is set to the negative of the 
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summation of the NS-1 Lagrange multipliers.  An iterative process can be set up at initialization 

such that if the sum of the last Lagrange multiplier is greater than the unity bound (the second 

bound constraint in Equation 5.5), another set of random candidate Lagrange multipliers can be 

selected until the bound is met.   

Figure 5.1 illustrates the PSO particle Lagrange multiplier position and velocity 

initialization process. 

 

Figure 5.1: Particle Lagrange Multiplier Initialization Process 

It should be noted that the notation in Figure 5.1 does not differentiate particle position or 

velocity as the initialization process is generalized for both.  Also note that each randomly 

developed Lagrange multiplier is relocated to a random index value such that the last index is not 
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necessarily the location for the negative sum of the Ns-1 Lagrange multipliers. The setting of the 

initial Lagrange multipliers for each particle Lagrange multiplier position and velocity now 

satisfies the summation constraint in Equation 5.5.  By definition, each particle is now a feasible 

solution to the SVR dual objective function defined in Equation 5.4 with the associated 

constraints shown in Equation 5.5. 

As the PSO process iterates, each particle moves through solution space.  We now restate 

the particles’ equation of motion in Equation 4.12 in Equation 5.9 for any given dimension as 

well as the particle velocity update in Equation 5.10. 

𝑝𝑘,𝑗+1 = 𝑝𝑘,𝑗 + [

𝑚1

𝑚2

𝑚3

]

𝑇

[

𝑣𝑘,𝑗

𝑟𝑎𝑛𝑑 ∗ (𝑝𝑏𝑒𝑠𝑡𝑘,𝑗 − 𝑝𝑘,𝑗)

𝑟𝑎𝑛𝑑 ∗ (𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑝𝑘,𝑗)

] 

 

 

(5.9) 

𝑣𝑘,𝑗 = [

𝑚1

𝑚2

𝑚3

]

𝑇

[

𝑣𝑘,𝑗−1

𝑟𝑎𝑛𝑑 ∗ (𝑝𝑏𝑒𝑠𝑡𝑘,𝑗−1 − 𝑝𝑘,𝑗−1)

𝑟𝑎𝑛𝑑 ∗ (𝑔𝑏𝑒𝑠𝑡𝑗−1 − 𝑝𝑘,𝑗−1)

] 

 

 

(5.10) 

Equation 5.9 states that for any particle k, its position in any dimension at epoch j+1 is 

computed as the sum of where it was (in any dimension) at epoch j plus the weighted sum of its 

velocity terms at epoch j.  The cognitive and social velocity terms, shown as the difference 

between and the particles’ pbest location and swarm’s gbest location at epoch j and where the 

particle was at epoch j, are modified by a uniformly distributed iid random scale factor.  Note the 

m vector is defined as m = [0.75 0.75 0.25]
T
 as discussed in Chapter 4. 

Based on the initialization process shown in Figure 5.1 and the particle position and 

velocity update Equations 5.9 and 5.10, we now conclude the sum of the Lagrange multipliers in 

both position and velocity for any particle are zero for any epoch.  This is achieved by 

initializing both the Lagrange multiplier position and velocity to zero simultaneously.  Every 
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update to position is now a weighted sum of position and velocity terms that sum to zero, forcing 

the sum of the Lagrange multipliers to be zero at every epoch. 

This concept constrains the motion of the particles’ Lagrange multipliers to always sum 

to zero which means the zero summation constraint in Equation 5.5 is always met.  Now every 

particle at every epoch is a feasible, but not necessarily optimal, candidate solution for the SVR 

optimization problem because both constraints in Equation 5.5 are met simultaneously.  The 

constraining of the motion of the particles effectively reduces the solution space.  This is the 

essential part of the PSO formulation and this formulation is called Constrained Motion Particle 

Swarm Optimization or CMPSO for short. 

5.4   PSO Boundary Condition Selection 

As described in Section 4.5, the PSO algorithm needs to handle situations where the 

particle might fly outside its boundaries for any given dimension.  The selection of the boundary 

method for any of the parameters other than the Lagrange multipliers should not be a factor, but 

to ensure a feasible SVR solution for every particle at every epoch, the constraint conditions 

must hold, even during boundary condition violations. 

Since the absorbing walls technique formulation will nullify the velocity for any one 

Lagrange multiplier, and in some cases may force a given Lagrange multiplier to be set to the 

boundary value, the zero summation constraint in Equation 5.5 cannot be guaranteed to be met.  

It is clear that this method will not work for the CMPSO framework as the goal is to have every 

particle at every epoch be a feasible SVR candidate. 

The reflecting wall technique manipulates the velocity for any given Lagrange multiplier 

that falls outside the solution region by reversing the sign of the velocity for the parameter that 

has violated a bound.  The use of this technique will also violate the summation constraint in 
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Equation 5.5 and will not be suitable as a PSO boundary condition violation remedy for the same 

reasons as stated for the absorbing walls technique. 

The remaining technique, invisible walls, has unique features which adapt well to the 

requirement of having every particle at every epoch represent a feasibility solution.  Recall for 

this technique that the particle is allowed to travel outside any given boundary without position 

or velocity adjustment.  This means that the summation constraint in Equation 5.5 is always met 

regardless if the particle is in the Lagrange solution space boundaries or not.  However, if any of 

the Lagrange multipliers violate the +/- 1 boundary, the second constraint in Equation 5.5 will be 

violated.  It turns out this situation is manageable because pbest for a particle that has any of the 

PSO parameters falling outside their respective boundaries will not be calculated, and 

subsequently gbest will not be affected.  An infeasible solution when a Lagrange multiplier is 

outside its bound for any given particle will never be considered as a candidate solution to the 

problem.  The penalty paid for using this technique is the particle will not be able to contribute to 

a solution when its Lagrange multipliers (or other parameters) fall outside a boundary.  However, 

the loss of computational efficiency can be offset by the fact that the fitness function will not 

need to be evaluated for a particle outside a boundary. 

5.5   PSO Fitness Function, Iteration Bounds and Stagnation 

As stated in Chapter 4, defining the fitness function for any given optimization problem 

can be the most difficult task in the formulation.  A notional fitness function was given in 

Equation 4.2, which suggested that the “goodness” of the CMPSO process would be dependent 

on some type of comparison between a candidate training set and the CMPSO estimate.  

Different techniques were considered, including MOPSO, but as it turns out, the SVR 

formulation itself is sufficient as the CMPSO fitness function. 
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The SVR time series regression and estimation process is the underlying regression 

engine in CMPSO, along with the optimization of the SVR user defined parameters.  There is no 

further need to develop a more complicated fitness function to evaluate the “goodness” of a fit to 

the training data as it is embedded in the SVR formulation itself.  Therefore the duality gap value 

formulation in Equation 3.43 is used as the fitness function for the PSO optimization problem.  

Equation 4.2 is now restated below as Equation 5.11 with its associated parameter constraints in 

Equation 5.12. 

CMPSO Fitness Function:      Minimize  𝛾  (5.11) 

  

Subject to: {

0 < 𝜀 ≤ 𝜀𝑚𝑎𝑥
0 < 𝐶 ≤ 𝐶𝑚𝑎𝑥
0 < 𝜎 ≤ 𝜎𝑚𝑎𝑥
−1 ≤ 𝛼𝑖 ≤ 1

  (5.12) 

 

The formulation above assumes the SVR estimation function found in Equation 5.7, 

which includes the scale factor C with the Lagrange multiplier limits set to +/- 1.  Note i is 

defined as the index to the NS training samples [1,…,NS]. 

The use of the duality gap for the PSO fitness function is an important feature of the 

CMPSO formulation.  The gap value verifies if the SVR process is complete, which will 

essentially eliminate the use of a QP algorithm that normally would be required to complete an 

SVR solution for every particle over every epoch.  This approach ensures a significant savings in 

computational time as will be shown in Chapter 6. 

It is interesting to note that the bias parameter b in Equation 5.7 no longer appears in the 

formulation or in the constraints Equation 5.12 as it is not a necessary part of the dual objective 

function calculation, but will be necessary for the primal objective function calculation, 

specifically in the estimation of the slack variables.  As it turns out, b can be calculated directly 
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and will not be necessary to include in the optimization parameter list.  The calculation of b is 

discussed in the next section. 

The PSO algorithm is an iterative process, as it tries to find a set of parameters that will 

satisfy the fitness function in Equation 5.11.  In the cases observed in this research, it was found 

that a two stage approach for achieving a minimal fitness value for  in Equation 5.11 can be 

obtained in a timely manner with limited computing resources.  The first stage of CMPSO moves 

the particles through solution space as described above, but ends at a slightly higher  value of 

0.025.  The diverse empirical data results shown in Chapter 5 indicates this is a fitness level 

bound sufficient enough to hold the , C, and  PSO parameters at their current value.  The 

second phase simply uses a QP algorithm to complete the Lagrange multiplier calculation to a 

fitness function value of 0.001 as required in the formulation.  The QP algorithm used in 

CMPSO is a modified version of the SMO algorithm detailed in [21, 50].  In the (unlikely) event 

that the CMPSO iterative process never reaches the first stage fitness function threshold, the 

CMPSO processing will halt after a maximum number of iterations has passed. 

As the PSO algorithm progresses, the particles will eventually tend towards the gbest 

value.  It is possible that all of the particles may converge to a location that might not meet the 

fitness function criteria.  It can be seen that the velocity update will tend to approach zero as the 

difference in its location relative to pbest and gbest will approach zero.  When this situation 

happens, the swarm is said to “stagnate”.  This is the case where the swarm has settled on a 

“local minimum”, which is defined as a place where the swarm thinks it has found a gbest 

location which approaches the fitness function criteria, but actually has not met the threshold.  

To handle these situations, it is necessary to reinitialize a subset of the particles.  CMPSO will 
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reinitialize almost all of the particles (98%) every 50 epochs to ensure a stagnation condition 

does not persist.   

It is important to note that the use of a two stage process including a QP algorithm and 

the occurrence of stagnation conditions are dependent on the computing platform’s 

computational performance limits, both in memory and speed.  If enough computing power is 

available, many more particles could be used in the swarm to find the optimal solution, 

decreasing the likelihood that stagnation will occur.  Results shown in Chapter 6 indicate that 

these method work for the given applications and the available computational resources. 

5.6   Time Series Data Scaling 

As noted in Table 5.1, one of CMPSO’s required attributes is its ability to adapt to 

different time series applications.  This can be difficult as the dimensions of any given time 

series data, both in the independent and dependent variable, can vary application to application 

by a large amount.  To manage this requirement, a data scaling factor is introduced to the 

CMPSO process. 

Prior to the PSO optimization process, the input training time series data is scaled to fit a 

standard (x, y) frame depending on the application.  If the goal is to use CMPSO to interpolate a 

function, the independent data values will be scaled to fit within a [0.0, 1.0] window.  If the 

objective is to use CMPSO to extrapolate data, the independent data values will be scaled to fit 

within a [0.0, xmax] window.  The value xmax is at least 0.9 in the cases presented in this research.  

In other cases where the required extrapolated value is very far from the last training point, the 

xmax value may need to be rescaled. 

The dependent variable, regardless of an interpolation or extrapolation application, is 

scaled to [-1.0, 1.0].  The scaled data is then input to CMPSO and processed until the PSO fitness 

function is reached as described above.  The final result is then scaled back to the original 
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dimensions of the problem at which time the time series estimate can be compared to the original 

data set for performance evaluation.   

The other method that could be used is to set the PSO parameter limits to very large 

numbers that would encompass many possible applications.  This would be inefficient as the 

solution space would be too large and the likelihood that a particle will converge to an optimal 

solution in a reasonable amount of time would be reduced.  This scaling function is the means by 

which a general time series regression or estimation process can be made regardless of 

application for CMPSO for the available computational resources. 

5.7   CMPSO Framework Summary and Parameter Settings 

There are many CMPSO formulation aspects detailed in this chapter that make the 

combination of SVR and PSO work for a wide range of time series prediction and regression 

problems.  This section summarizes the CMPSO framework and illustrates the details of the 

CMPSO algorithm and its specific parameter settings. 

Figure 5.2 shows the general CMPSO process framework.  Starting with Figure 5.3, each 

of the functional areas of the CMPSO framework is defined in detail.  First is the input time 

series scaling.  Figure 5.4 illustrates particle initialization process.  Figure 5.5 illustrates the 

fitness function evaluation.  Figure 5.6 shows the particle motion update function and Figure 5.7 

shows the particle parameter re-initialization function.  Finally Figure 5.8 shows the last 

optimization steps and evaluation process. 
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Figure 5.2: CMPSO Process Framework 

 

Figure 5.3: CMPSO Input Data Scaling 
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Figure 5.4: CMPSO Particle Parameter Initialization 

 

Figure 5.5: CMPSO Particle Fitness Evaluation 
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Figure 5.6: CMPSO Particle Motion Update 

 

Figure 5.7: CMPSO Particle Re-Initialization 
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Figure 5.8: CMPSO Final Processing 

Figures 5.3 through 5.8 represent the entire CMPSO algorithm.  There are many 

parameters and limits associated with the actual implementation of CMPSO.  Table 5.2 details 

these values.  

We have now completely defined the CMPSO algorithm, including functional processes 

as well as all the relevant parameters associated with the algorithm.  The following chapter will 

illustrate CMPSO’s ability to estimate arbitrary time series functions. 
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Table 5.2: CMPSO Parameter List 

CMPSO 

Parameter 

Details Notes 

Number of 

Particles 

CMPSO uses 500 particles 

regardless of application. 

Selected based on computational 

hardware used for this research (see 

Chapter 5).  

Particle 

Velocity Limit  

During particle velocity and 

update cycles, the velocity is 

limited to 10% of the range of 

bounds for any given 

parameter. 

This limit essentially slows the particles 

motion through the solution space and 

helps keep a significant number of 

particles in the solution space boundaries. 

 Max and Min 

Values 

0.10 and 0.02, respectively. Determined empirically based on data 

examples shown in Chapter 5. 

C Max and Min 

Values

2.0 and 0.001, respectively. Determined empirically based on data 

examples shown in Chapter 5. 

 Max and Min 

Values 

1.0e-3 and 1.0e-5, 

respectively. 

Determined empirically based on data 

examples shown in Chapter 5. 

Particle Reset 

Limits 

98% of the lowest scoring 

pbest particles are reset every 

50 epochs. 

This prevents swarm stagnation. 

Fitness Function 

Thresholds 

0.25 and 0.001. The higher value is used to halt the PSO 

search process for , C, and .  The 

second value is used to complete one QP 

pass on the gbest parameters to complete 

the CMPSO process. 

Epoch Limit Maximum number of epochs 

to execute is 20000. 

In case the PSO fitness function does not 

reach a feasible solution, the CMPSO 

process will halt after the epoch limit is 

reached. 
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CHAPTER 6: PERFORMANCE METRICS AND RESULTS 

 

6.1   Statistical Performance Metrics 

We have now defined CMPSO and have shown the implementation details for using SVR 

as the time series regression and estimation engine along with PSO to assist in optimizing user 

defined variables as well as the standard SVR variables.  To illustrate CMPSO performance 

against any given time series regression or estimation problem, a set of time series statistical 

comparison metrics needs to be defined. 

Recall from Section 1.1 the definition of “goodness” for a time series estimate.  First, it 

must be consistent, meaning the expected value of the estimate as compared to a reference time 

series must approach zero.  Equation 6.1 illustrates the bias estimation equation. 

Error Mean: 
1

𝑁𝑆
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

𝑁𝑆

𝑖=1

 (6.1) 

 

 where NS is our standard definition of the number of time series samples, yi is a sample of the 

time series we are trying to estimate, sometimes referred to as reference or “truth” data, and f(xi) 

is the generated estimate. 

Equation 6.1 is referred to as the error mean.  Related to this metric is the mean absolute 

error defined in Equation 6.2. 

Mean Absolute Error: 
1

𝑁𝑆
∑|𝑦𝑖 − 𝑓(𝑥𝑖)|

𝑁𝑆

𝑖=1

 (6.2) 
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Both Equations 6.1 and 6.2 are standard bias measures that are used to evaluate a 

goodness of fit. 

The second measure of estimation performance is the consistency of the estimate.  

Consistency is defined as the variance of the estimate relative to the closeness of fit to the 

example data and is defined in Equation 6.3. 

Estimation Consistency:  lim
𝑁𝑆→∞

𝐸[(𝒚 − 𝑓(𝒙))2] = 0 (6.3) 

 

where NS is the number of samples in the data set and the E[.] is the expected value operator 

represented in Equation 6.6. 

The most common measure of consistency is the Normalized Mean Square Error 

(NMSE) as defined in Equations 6.4, 6.5 and 6.6. 

NMSE:  
1

𝜎2𝑁𝑆
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2

𝑁𝑆

𝑖=1

 

 

(6.4) 

  𝜎2 =
1

𝑁𝑆 − 1
∑(𝑦𝑖 − 𝐸[𝒚])

2

𝑁𝑆

𝑖=1

 

 

 

(6.5) 

 𝐸[𝒚] =
1

𝑁𝑆
∑𝑦𝑖

𝑁𝑆

𝑖=1

 
 

(6.6) 

 

Equation 6.5 is often referred to as the sample standard deviation of a time series.  Note 

the  value in this equation is not related to the  value in the SVR formulation. 

Figure 6.1 is an illustration of the difference between biased/unbiased and 

consistent/inconsistent examples of data sets.  Consider a case where a single two dimensional 

data point is trying to be estimated.  The blue X in Figure 6.1 illustrates the target.  The red dots 

mark the given estimation process attempts to target the location X.  The four separate panels in 

the figure represent the four qualitative possibilities of bias and consistency measures. 



www.manaraa.com

 

73 
 

 

Figure 6.1: Illustration of Estimator Bias and Consistency 

It is clear from Figure 6.1 that a good estimator will hit close to the target repeatedly, 

making it unbiased and consistent. 

For the data series examined in this chapter, there are other measures of time series 

prediction effectiveness that need to be defined.  First is the Mean Square Error (MSE) and 

subsequently the Root Mean Square Error (RMSE) defined in Equations 6.7 and 6.8, 

respectively. 

MSE:  
1

𝑁𝑆
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2

𝑁𝑆

𝑖=1

 

 

(6.7) 

  RMSE:  √
1

𝑁𝑆
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2

𝑁𝑆

𝑖=1

 

 
 

 

(6.8) 
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As seen in these two equations, both of these measures are focused on the consistency of 

the estimating function. 

The next two measures are the Maximum Average Percent Error (MAPE) and Maximum 

Error (MAXE) shown in Equations 6.9 and 6.10, respectively. 

MAPE:  
100

𝑁𝑆
∑|

𝑦𝑖 − 𝑓(𝑥𝑖)

𝑦𝑖
|

𝑁𝑆

𝑖=1

 

 

(6.9) 

  MAXE: 𝑚𝑎𝑥(|𝑦𝑖 − 𝑓(𝑥𝑖)|)𝑖=1,…,𝑁𝑆  (6.10) 

 

These measures of effectiveness give an indication of bias.  It should be noted that the 

MAPE value is scaled to 100 %. 

We have now defined a set of measures of effectiveness for time series regression and 

estimation.  A good estimator will tend to have close to zero values for all of the above 

represented measures of effectiveness. 

6.2   Computing Environment 

To evaluate CMPSO against selected time series applications, a computing environment 

was set up to implement CMPSO as well as measure the performance per the metrics outlined in 

Section 6.1.  For this research, a single Windows based Personal Computer (PC) was used as the 

development and test platform.  As noted earlier, computational performance is a function of PC 

hardware and many CMPSO parameter settings mentioned in Chapter 5 could be changed if 

more (or less) advanced computing hardware and software is available. 

The computer platform used for this research is a 64 bit Windows 7 Ultimate based PC 

running an Intel Core i7 Quad Central Processing Unit (CPU) (model Intel Core i7 950) with a 

variable clock between 2.8 and 3.2 GHz.  The PC also has a 1.0 terabyte (TB) 7200rpm Serial 
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Advanced Technology Attachment (SATA) III hard drive and 12 gigabytes (GB) of Double Data 

Rate (DDR) 3 Random Access Memory (RAM). 

The CMPSO algorithm software development was done using a 64 bit version of 

MATLAB version R2010b (Version 7.11.0.584, win64).  It should be noted that when CMPSO 

was executed on the PC, the MATLAB process affinity was set to all cores of the CPU and the 

MATLAB process priority was set to “high”.  In addition, some of the CMPSO functions were 

written in the C programming language and converted to “MATLAB Executable” or “MEX” 

files to decrease the overall processing time.  They are generally implemented when large, 

repetitive processes are required in the computations.  MEX files are essentially dynamically 

linked routines that MATLAB can call externally [132].  They have the ability to access (read 

from and write to) the MATLAB workspace where all of the computed data is stored for 

processing.   

The C programs were developed and compiled using Microsoft Visual C++ 2010 

Express.  The compilation process is part of the MATLAB MEX file development process, but 

the C compiler is called externally.  Figure 6.2 illustrates the software architecture for the 

CMPSO algorithm implementation. 

6.3   Computational Efficiency 

As stated in Section 5.5, the use of the duality gap as the PSO fitness function eliminates 

the need for a QP solver for every particle at every epoch.  To prove this, a simple experiment is 

used to illustrate the computational efficiency gains of CMPSO vs. a more conventional, or 

“separated” PSO and SVR implementation.  In the separated implementation, each particle’s 

Lagrange multipliers are compute to reach a duality gap limit of 0.001 for every epoch. 

Equation 6.11 represents an arbitrary exponentially weighted sinusoidal function with 

additive Gaussian noise that is used to measure CMPSO computational efficiency. 
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𝑦 = sin(0.2𝜋𝑥) 𝑒0.1𝑥 + 0.5𝑁(0,1) (6.11) 

 

 

Figure 6.2: CMPSO Software Architecture 
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A 41 point data set was created based on Equation 6.11 and is shown in Figure 6.3. 

 

Figure 6.3: Example Time Series for Computational Efficiency Analysis 

Note that the sample spacing between points in Figure 6.3 is 0.75. 

For this experiment, a parallel PSO and SVR implementation was created to evaluate the 

effect of eliminating the QP process from the CMPSO iteration cycle.  Figure 6.4 shows the 

block diagram of the two approaches considered. 

 

Figure 6.4: Comparison of CMPSO Architecture vs. Typical Optimization Setup 
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As seen in Figure 6.4, a typical optimization routine would require the use of a QP to 

optimize the SVR problem for every particle and for every step (epoch) in the process.  

Alternatively, the CMPSO process forces each potential SVR solution candidate to be feasible 

and will continue until the duality gap is reached, eliminating the need for executing a QP solver 

for every particle at every epoch. 

To show the computational benefit CMPSO has vs. the other typical optimization 

approach, the data set shown in Figure 6.3 was run 300 times for CMPSO and for a combined 

PSO/SVR implementation.  Table 6.1 shows the difference between the two approaches for 

comparison.  

Table 6.1: CMPSO vs. Alternative Optimization Implementation 

Function or 

Parameter 

CMPSO Alternative 

Number of 

Particles 

CMPSO uses 500 particles 

regardless of application. 

Maximum of 25. 

SVR 

Optimization 

Technique  

Uses PSO and at most one 

pass of an SMO based QP 

algorithm. 

Uses same SMO based QP algorithm for 

every particle at every epoch. 

 

SVR Parameter 

Optimization 

PSO based. PSO based to only determine , C, and . 

 

Algorithm 

Stopping 

Criteria 

CMPSO halts when fitness 

function (duality gap)  is less 

than or equal to 0.001. 

Same as CMPSO. 

 

The alternative algorithm is only replacing the PSO part of CMPSO.  The data is still 

scaled and rescaled at the end of the process.  This is necessary to ensure the solution space for 

both approaches is the same.  It is also important to note for this experiment that the exact same 

code elements shown in Figure 6.2 used for CMPSO are used for the alternative method.  This is 

necessary to have a meaningful comparison between the two approaches. 
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The 41 point time series defined in Equation 6.11 was generated 300 times, with different 

values of noise added for each individual set.  Each of the 300 time series sets were input to both 

CMPSO and the alternative (PSO/SVR separated) optimization approach.  Note the two 

algorithms were not run concurrently.  A set of timing metrics was recorded for each of the 300 

runs for CMPSO and the alternative approach.  At the time either of the algorithms starts, a time 

stamp is recorded in MATLAB.  When the optimization routine is complete, another time stamp 

is recorded and the difference between the two is calculated and stored.  The mean value of the 

time to execute (time difference) for each algorithm over the 300 data sets was then computed. 

In addition to the timing performance of each algorithm, other performance metrics were 

calculated.  First is the percentage of data sets where either of the two approaches converged to 

the duality gap limit.  The second is the NMSE estimation metric described in Section 6.1.  Table 

6.2 shows the performance results of the two approaches. 

Table 6.2: CMPSO Performance vs. Alternative Optimization Implementation 

Measured 

Parameter 
CMPSO PSO + SVR Notes 

Mean Algorithm 

Execution Time 

(sec) 

 

7.27 

 

 

39.08 

PSO + SVR used 

minimum of 25 particles 

Percentage of Runs 

that Converged 

 

99.0% 

 

0.0 

PSO + SVR never 

converged to dual gap 

limit 

NMSE 

Typically less than 

0.005 

 

{N/A} 

Since PSO + SVR never 

converged, NMSE was 

not calculated 

 

The experimental results show that 99% of the time CMPSO converged to a solution in 

approximately seven seconds, typically with a very small NMSE of less than 0.005.  By contrast, 

running PSO and SVR separately, the solution never converged with the minimum number of 
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particles (25) and it took more than five times longer for the PSO+SVR method to settle on 

incorrect results.  This means that the swarm in that approach essentially stagnated to a 

suboptimal solution.  If more particles are used in the alternative method to try and improve the 

results, the processing time would only increase. This simple experiment shows that not only is 

CMPSO a viable algorithm for approximating time series data, it is also more computationally 

efficient than alternatives that use SVR and PSO separately. 

6.4   Arbitrary Function Analysis 

The CMPSO formulation is adaptable to many different kinds of data series.  The first 

example shown above is approximating an exponentially weighted sinusoidal function.  This 

section illustrates the utility of CMPSO for other several other arbitrary time series functions. 

6.4.1   SINC Function 

The SINC function is a common mathematical function and is defined in Equation 6.12. 

𝑦 =
sin(𝑥)

𝑥
 (6.12) 

 

CMPSO was run against this function for 101 data samples.  Figure 6.5 shows the results 

for this example.  The CMPSO optimized the fit for this curve in 93 epochs.  Note the blue curve 

is the estimate after the first phase of CMPSO is complete where the  value is just under 0.25.  

The blue curve is a close approximation of the curve, but this approximation is clearly good 

enough to stop iterating over the , C, and  values as seen by the final result shown by the green 

curve.  The final statistical measures between the original data set and the CMPSO 

approximation show an error mean of -0.015, an NMSE of 0.00026, an RMSE of 0.0053 and a 

MAXE of 0.0065.  All of these measures show excellent matching between the original data and 

the CMPSO approximation. 
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Figure 6.5: CMPSO Approximation of SINC Function 

6.4.2   SINC Function with Missing Data 

Another CMPSO utility is the ability of the algorithm to interpolate functions where data 

is missing over certain regions.  Using the same SINC function defined in Equation 6.12, we 

now recreate the same 101 point data sample, but omit the data points where -0.35 < x < -0.25.  

This represents about 5% of the data missing.  Figure 6.6 shows the CMPSO performance.  

Although there was not a significant amount of data missing, the error statistics show that the 

approximation over the whole curve was still good.  The error mean is -0.0017, the NMSE and 

RMSE are 0.00026 and 0.0054, respectively, and the MAXE 0.0065.  These values are very 

similar to the previous example.  The data presented here is for illustration purposes showing the 

utility of CMPSO.  A more challenging data set with missing data is illustrated in Section 5.4.3. 

6.4.3   S&P 500 Data 

The last three data examples showed CMPSO performance against arbitrary sinusoidal 

and exponential based functions.  CMPSO performed well for the regression and data 
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interpolation applications including the estimation of missing data.  We now examine CMPSO 

performance against a real world application. 

 

Figure 6.6: CMPSO Approximation of SINC Function with Missing Data 

The next data set is an example of a common stock market index: the S&P 500 Index.  

The S&P 500 is a stock market index based on the performance of 500 large companies.  We 

selected 75 samples of S&P 500 daily closing price from mid-October 2014 through the end of 

January 2015 for analysis, as this data is publically available for download [133].  This is very 

challenging data set to estimate as there are many variations and trends in the data as shown in 

Figure 6.7, thus the reason these data samples were chosen for analysis.  The statistical results 

for this analysis show an error mean of -0.2192, NMSE and RMSE values of 0.0247 and 8.3060 

respectively, and a MAXE of -25.0894.  We will examine other real world data examples in 

Section 6.4.2. 
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Figure 6.7: CMPSO Approximation of S&P 500 Data 

6.5   Benchmark and Competition Data Performance 

The previous examples in Sections 6.2 and 6.3 showed several examples of CMPSO 

performance against arbitrary functions as well as one real world application.  The results 

showed that CMPSO performed well against relatively easy and somewhat more complex data 

sets with many trends and variations.  We now explore CMPSO performance further by 

estimating standard benchmark data sets that are commonly used to evaluate time series 

prediction methods. 

6.5.1   Mackey-Glass Benchmark Data 

As seen in [1], Mackey-Glass benchmark data is a common artificial (synthesized) time 

series benchmark by which time series prediction algorithms are evaluated, including SVR.  

Mackey-Glass data is a nonlinear time delay differential equation which has both periodic and 

chaotic dynamics [61].  The Mackey-Glass equation is represented in Equation 6.13. 

𝑑𝑥(𝑡)

𝑑𝑡
= −bx(𝑡) +

𝑎𝑥(𝑡 − 𝜏)

1 + 𝑥(𝑡 − 𝜏)10
 (6.13) 
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where x(t) is the time series representation, t is time,  is a delay factor and a and b are real 

valued scale factors.  There is another factor, t, not expressed in Equation 6.13 but it is typically 

used for generating the samples of time series data.  As published, the standard values for these 

parameters are a = 0.2, b = 0.1,  = 17, x(0) = 1.2 (initial condition), and t = 0.1.  In order to 

generate the time series data, one must solve the differential equation.  Figure 6.8 is an example 

output of the function for the first 1000 seconds. 

 

Figure 6.8: Mackey-Glass Data Example (First 1000 Seconds) 

CMPSO performance has been compared to other published time series prediction 

techniques [108] and has performed well.  For comparison, there are two specific experiments 

using this data that are presented in this research. 

1. Regression: The first 2000 data points of the Mackey-Glass data, sampled every 

15 samples (t = 0.1) are used to evaluate CMPSO regression capabilities. 
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2. Time series prediction: Starting with the first 2000 data samples, sampled every 

15 samples (t = 0.1), the CMPSO was trained and the following 1 to 30 sample 

prediction horizons were estimated and compared to truth data.  This process was 

repeated 50 times, moving the starting sample training sample point by 100.  The 

resulting ensemble of prediction horizon data is then measured to evaluate 

CMPSO accuracy (bias) and consistency. 

Figure 6.9 illustrates the 2000 point Mackey-Glass data set used for evaluation. 

 

Figure 6.9: Mackey-Glass Data Example (First 200 Seconds Used for Evaluation) 

CMPSO comparison is against other SVR/SVM related techniques also using the 

Mackey-Glass benchmark data for evaluation.  The first comparison is to a (Regularized) 

Orthogonal Least Squares algorithm that is SVM based [28].  This technique uses a least squares 

method to reduce the number of training values similar to the strategy used for CMPSO in this 

example.  The performance stated in this reference is only for prediction for a +1, +5, and +10 

sample prediction horizon, where each sample has a t of 0.1. 
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The second is an SVR based approach using a radial basis function similar to CMPSO 

[25].  In this example, the data is interpolated and there is no prediction application associated 

with the publication.  The third approach is also SVM based and again uses an SVR based 

approach like CMPSO [34].  This SVR based application only uses the Mackey-Glass data to 

evaluate performance for a one-step-ahead prediction horizon (+1 data sample).  The fourth 

CMPSO comparison is made against a prediction model called Kernel Dynamical Modeling 

which is partially based on the use of kernel functions, similar to the SVR method used in 

CMPSO [88].  This particular application uses the Mackey-Glass data set to again evaluate 

performance for a one-step-ahead prediction horizon (+1 data sample).   

Additionally, more recent approaches using SVR and Mackey-Glass benchmark data 

have been examined and compared.  One method is called Accurate Online Support Vector 

Regression (AOSVR) [89].  This approach uses an SVR based algorithm, but also uses a 

technique that improves the training efficiency and also varies the SVR user defined variables.  

AOSVR also has a user defined parameter that bounds the regularization constant and it has to be 

set by the user a priori. 

Another recent SVR method for Mackey-Glass estimation is the Multiple Output SVR 

(M-SVR) [90].  This technique uses multi-dimensional input/output training sets along with a 

quadratic loss function to estimate future values of the function.  The algorithm uses five 

different models and uses PSO for model validation and selection.  It should be noted that only 

the MAPE metric was the only similar metric to what was calculated and used in other 

publications. 

The last current SVR based estimation is based on an iterative approach also using 

multiple support vector regression models [91].  It basically predicts one step ahead and feeds the 
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current predicted value (prediction horizon of +1) into another training set with one less sample.  

The framework shown in this reference uses multiple SVR models, one for each prediction 

horizon and then combines the results for a given prediction horizon.  The results shown are for a 

prediction horizon of +20. 

Figure 6.10 shows the CMPSO estimation (interpolation) of the Mackey-Glass data set. 

 

Figure 6.10: CMPSO Mackey-Glass Data Estimation 

The performance metrics for interpolation show that the CMPSO estimation had an error 

mean of -0.00017, an NMSE and RMSE of 0.0081 and 0.0242, respectively and a MAXE of 

0.1690. 

To calculate statistics for the prediction problem, a set of 100 Monte Carlo runs were 

made, each with different random initialization points for CMPSO.  The first 30 data points after 

the last Mackey-Glass data set point were estimated 100 times and collected for analysis 

(prediction horizon of [1,…,30]).  The CMPSO prediction performance results are shown in 

Table 6.3. 
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Table 6.3: CMPSO Prediction Performance for Mackey-Glass Data 

 Prediction Horizon Performance Metric 

MSE NMSE RMSE 

Interpolation 0.0006 0.0055 0.0199 

+1 Sample 0.0006 0.0120 0.0254 

+5 Samples 0.0014 0.0268 0.0379 

+10 Samples 0.0032 0.0610 0.0569 

+15 Samples 0.0062 0.1176 0.0787 

+20 Samples 0.0104 0.1988 0.1018 

+30 Samples 0.0214 0.4184 0.1461 

 

One example run of the CMPSO estimate is shown in Figure 6.11 for the +1 through +30 

samples prediction horizon. 

 Figure 6.11: CMPSO Mackey-Glass Data Prediction 

We now compare CMPSO prediction performance to the other five published time series 

regression and prediction methods listed in this section.  It should be noted that the published 
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data used the MSE metric for comparison, or in one case MAPE.  Table 6.4 is a summary of 

CMPSO performance vs. the other methods. 

Table 6.4: CMPSO Prediction Performance (MSE) vs. Other Techniques 

Technique Regression Prediction Horizon (Samples) 

+1 +5 +10 +20 

CMPSO 

(MAPE) 

0.0006 0.0006 

(2.57) 

0.0014 0.0032 0.0104 

ROLS [28] N/A 0.1064 0.1696 0.3248 N/A 

SVR [25] 0.0004 N/A N/A N/A N/A 

SVM+RT [34] N/A 0.5158 N/A N/A N/A 

KDM [88] N/A 0.0066 N/A N/A N/A 

AOSVR [89]  

(two results that depend on a 

user defined parameter setting) 

N/A 0.0011 or 

0.00005  

N/A N/A N/A 

M-SVR [90] 

(MAPE ) 

N/A N/A 

(0.748) 

N/A N/A N/A 

Iterative M-SVR [91] 

N/A N/A N/A N/A 0.0065  

+/- 

0.0003 

 

CMPSO performed well as compared to the published results using SVR based methods.  

In at least one recent case, user defined parameters had to be adjusted for the given algorithm to 

exceed CMPSO performance.  More than half the cases CMPSO exceeded other relevant SVR 

based time series prediction techniques as published. 

6.5.2   EUNITE Competition Data 

SVR based solutions have been examined for many real world applications including 

Electrical Utility Load forecasting [134 to 148].  Coincidently, another common benchmark data 

set used to evaluate time series prediction and regression algorithms is based on real world 

electrical utility load data.  In 2001, the European Network on Intelligent Technologies for Smart 
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Adaptive Systems (EUNITE; see ref [62]) initiated a competition [63] to predict maximum 

electrical loads for the East-Slovakia Power Distribution Company.  The goal is to estimate 

maximum daily power loads for the month of January 1999 based on the daily values of 1997 

and 1998 of electrical load and temperature.  The measures of performance for this problem were 

both MAPE and MAXE (as defined in Section 6.1).  It should be noted that the number of 

samples used for performance estimation is 31 which corresponds to the number of days in 

January. 

Unlike the previous data sets analyzed in this chapter, this particular time series 

estimation problem has multiple inputs: time, load power, and daily temperature.  Clearly a 

strategy will be needed to address all these factors and a way to implement CMPSO to estimate 

the January 1999 maximum power loads. 

The first observation is the relationship between day of the week and the maximum 

power load.  Figure 6.12 shows a plot of the mean of the maximum power load for 1997 (red 

curve) and 1998 (green curve) as a function of the day of the week. 

 

Figure 6.12: Mean of Maximum Power by Day of Week for 1997 and 1998 
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It is clear from Figure 6.12 that the weekend days (Saturday, Sunday; Day 7 and Day 1 in 

Figure 6.12) tend to draw less power than the rest of the working week and is apparently valid 

year to year.  Figure 6.13 is a view of the January 1997 (red curve) and January 1998 (green 

curve) maximum power loads, time aligned such that the two data sets are aligned by day of the 

week.  There are trends surrounding the weekends vs. the work week, as noted by the relative 

maximums of five days duration vs. the general minimums of two days duration that are clearly 

visible.   

 

Figure 6.13: Maximum Power by Day of the Week for January 1997 and January 1998 

There is also a relationship between temperature and maximum power consumption for 

any given day.  This can be seen by looking at the day-of-the-week aligned difference in power 

and temperature between 1997 and 1998.  Figure 6.14 illustrates 360 sample differences between 

1997 and 1998, time aligned to the day of the week. 
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There appears to be an inverse relationship between temperature and maximum power as 

seen in Figure 6.14.  This can be quantified by calculating a correlation coefficient between the 

two data sets as shown in Equation 6.14. 

𝜌𝑥,𝑦 =
𝐸[(𝑥 − 𝑢𝑥)(𝑦 − 𝑢𝑦)]

𝜎𝑥𝜎𝑦
 (6.14) 

 

 

Figure 6.14: Scatter Plot of the Difference in Power and Difference in Temperature for 360 Days 

in 1997 and 1998 (Time Aligned by Day of the Week) 

 

In this case, x and y are the change in temperature and change in maximum power load 

respectively.  The  and  values are the means and standard deviations of the two data sets 

respectively.  For the data sets shown in Figure 6.14, a correlation coefficient  was calculated 

(Equation 6.14) to be -0.5041 over the 360 data points.  This clearly shows that there is an 

inverse relationship between maximum power and temperature. 



www.manaraa.com

 

93 
 

Given this relationship, we would like to construct a simple linear approximation 

between the change in maximum power and the change in temperature shown in Figure 6.14.  

This approximation is defined in equation 6.15. 

∆𝑃= −3.4668∆𝑇 + 9.9573 (6.15) 

 

where P and T are the change in power and change in temperature respectively.   

For this data set, we are going to formulate two different strategies to estimate the 

maximum power load for January 1999: 

1. The mean value of the January 1997 and January 1998 data sets, time aligned to 

the day of the week, will be used to estimate a regression curve using CMPSO. 

2. Assuming the temperature for January 1999 is known (which was provided as part 

of the EUNITE competition), we can now offset the amount of power (P) based 

on the difference in temperature between January 1998 and January 1999 and use 

the same CMPSO strategy listed in approach 1). 

Table 6.5 shows the CMPSO results for the EUNITE competition, with and without the 

linear approximation to the change in temperature and power relationship. 

Table 6.5: CMPSO EUNITE Prediction Performance 

Measured 

Parameter 

CMPSO CMPSO with 

Linear Offset 

Notes 

MAPE 3.176 2.628 % Error 

MAXE 84.931 74.663 Max Error in MW 

 

As shown in Table 6.5, there is significant improvement by using the temperature data to 

offset the values.  Figure 6.15 shows the final results of this experiment.  As can be seen in 
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Figure 6.15, CMPSO estimates for the January 1999 maximum power load are very close to the 

actual values, for both prediction strategies. 

In addition, Figure 6.16 is where CMPSO (and the offset addition) would have ranked in 

the competition based on the values shown in Table 6.6 (referenced from [62]). As shown in this 

figure, an attempt was made to rank CMPSO and CMPSO with the maximum power offset with 

the other competitors (in the absence of the actual result values from each competitor).  There are 

two sets of highlighted text boxes and lines for each of the CMPSO results in this figure.  Based 

on MAPE, it appears CMPSO alone would have ranked at least sixth.  In the case where the 

January 1999 temperature is included, CMPSO (plus the offset) would have ranked no worse 

than third based on MAPE.  Note that the MAXE values were also close to the other competitors 

(refer to Table 6.5 and Figure 6.16). 

 

Figure 6.15: CMPSO EUNITE Prediction Results 
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The winners of this competition, Chen, Chang, and Lin [92] used an SVM/SVR approach 

with multi-dimensional inputs to predict load.  They also took into consideration additional 

attributes such as if the day being predicted is a holiday.  The authors further reported details of 

their approach in [93], noting that there is no added value in using temperature data to predict the 

load.  Although the weighting of electrical load for a holiday was not taken into consideration for 

this CMPSO benchmark evaluation, there was clearly an improvement in CMPSO prediction 

performance by modeling temperature and including the offset in the results.  For reference, the 

next eight winners are listed in references [94 through 101].  There are several neural network 

based approaches as well as fuzzy systems applied to this problem.  It is interesting to note that 

SVR was not considered in any of the top competitors, except for the winner of the competition 

and CMPSO. 

 

Figure 6.16: CMPSO EUNITE Results as Compared to Top 9 Competitors (from [62]) 

There are several SVM/SVR based research efforts since the competition was held that 

use EUNITE data as benchmark data for evaluation.  These methods are used as comparison to 
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CMPSO, with and without the simple delta power offset strategy.  Table 6.6 summarizes the 

results. 

The first method uses an Empirical Mode Decomposition (EMD) and SVR hybrid 

method [102].  The EMD decomposes the data into smaller subsets at which point SVR is 

applied.  Another SVM based method is described in [103], where a Least Squares SVM (LS-

SVM) approach is used along with a grid search based model as well as a Bayesian framework.  

Also a grid based pattern search is used to evaluate the SVR user defined parameters. 

The next reference compares many different models including ANNs and SVMs and 

applies them to the EUNITE data [104].  As it turns out, the best approach presented here was an 

Auto-Regressive type model (AR).  Another SVM based approach is given in [105], where the 

past seven days are used to predict the next day ahead.  Again, a Radial Basis function is used for 

the kernel.  Another LS-SVM based approach is given that uses a k-nearest neighbors approach 

to help identify training patterns for the SVM [106].  Recall the LS-SVM uses a different loss 

function in the formulation as compared to CMPSO’s -insensitive loss function. 

6.5.3   CATS Competition Data 

The last benchmark data set used to evaluate CMPSO is based on an artificially generated 

time series.  In 2004 at the International Joint Conference on Neural Networks, a competition 

was organized to compare different prediction methods using a proposed CATS (Competition on 

Artificial Time Series) benchmark time series data of 5000 samples, among which 100 samples 

are missing [64].  The goal of the competition was to predict five sets of 20 missing data points 

each from the given data of 5000 samples and compare the methods using two criteria.  The first 

was the MSE for the four missing data gaps at sample indices 981 to 1000, 1981 to 2000, 2981 to 

3000, and 3981 to 4000 in addition to the last omitted 20 data points with sample indices 4981 to 
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5000.  This error is denoted as E1 in the competition literature.  The second was the MSE for the 

first four missing data gaps only.  This error is denoted as E2 and was meant to only evaluate the 

effectiveness of the interpolation of a given algorithm versus the prediction estimate in E1 (the 

last 20 omitted samples).  Figure 6.17 shows the entire CATS data set. 

Table 6.6: CMPSO EUNITE Prediction Performance vs. Post Competition SVM Methods 

Method Metric 

MAPE MAXE MSE  Notes 

LS-SVM with k-

nearest neighbor [Ref 

106] 

 

1.71 40.99 N/A  

LS-SVM [Ref 103]  1.97 39.778 N/A Bayesian Approach 

EMD-SVR [Ref 102] 1.98 N/A 284.3  

CMPSO with Linear 

Offset 
2.628 74.663 594.3 

Offset Applied for Jan 1999 

Temperature Data 

CMPSO 3.176 84.931 908.8  

SVM Model [Ref 105] 3.67 N/A N/A  

AR Model [Ref 104] 6.69 N/A N/A 
AR Type Model Showed 

Better Result than SVM 

 

The strategy for adapting CMPSO was straight forward for this particular application.  

For each of the first four data gaps, every tenth data sample was used.  Half of the samples were 

before the gap and the other half after the gap.  In addition, ten consecutive samples were used 

just before and after the data gap for a total of 94 data points per set.  For the last data set, a 

similar strategy of every 10 data samples was selected prior to the end of the data set along with 

the last 20 sequential samples for a total of 138 samples.  Every sample was estimated between 

the first and last index of the data set and compared to the given results for evaluation.  
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Table 6.7 shows the CMPSO results as compared to the top ten results in descending 

order of E1 MSE.  From the results, CMPSO has the lowest E1 and E2 MSE scores in the 

competition.  Since the competition concluded, there have been other time series prediction 

methods that have used the CATS benchmark for evaluation.  These are also included in Table 

6.7 and are marked with an asterisk (*).  As seen in the table, CMPSO still outperformed all of 

the other more recent methodologies. 

Figure 6.17: CATS Data 

Figures 6.18 through 6.22 show the CMPSO results against the four missing gaps of data 

as well as the last extrapolation data set.  The red curve is the original data set with the red 

circles being the actual missing data points (truth data).  The blue curve (and blue circles) is the 

CMPSO estimate.  As seen from these figures, there is very good agreement between the actual 

CATS data and the CMPSO results. 
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Table 6.7: CMPSO CATS Prediction Performance vs. Top Ten Entries and Recent Publications 

E1 MSE E2 MSE Model 

113 140 CMPSO 

143 129 
ANN and AdaBoost* [118]; Single Global 

Model  

262 239 
ANN and AdaBoost* [118]; Multiple Local 

Models 

287 N/A Variance Minimization LS-SVM* [120] 

390 288 Dynamic Factor Graphs* [121] 

408 346 Kalman Smoother [107] 

441 402 Recurrent Neural Networks [108] 

502 418 Competitive Associative Net [109] 

530 370 
Weighted Bidirectional Multi-stream 

Extended Kalman Filter [110] 

577 395 SVCA Model [111] 

644 542 MutliGrid-Based Fuzzy System [112] 

653 351 Double Quantized Forecasting Method [113] 

660 442 Time-reversal Symmetry Method [114] 

676 677 
BYY Harmony Learning Based Mixture of 

Experts Model [115] 

725 222 Ensemble Models [116] 

1215 979 
Deep Belief Network with Boltzmann 

Machines* (best value) [119] 

2510 2450 ANN Based Approach* (best value) [117] 
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Figure 6.18: CMPSO Estimate for CATS Data Set 1 

 

Figure 6.19: CMPSO Estimate for CATS Data Set 2 
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Figure 6.20: CMPSO Estimate for CATS Data Set 3 

 

 

Figure 6.21: CMPSO Estimate for CATS Data Set 4 
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Figure 6.22: CMPSO Estimate for CATS Data Set 5  
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CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH 

 

7.1   Conclusions 

Support Vector Machines (SVMs) are powerful learning mechanisms that have been 

developed and matured over the last 15+ years.  They provide a method for predicting and 

estimating time series for a myriad of applications including financial market forecasting, 

weather and environmental parameter estimation, electrical utility loading prediction, machine 

reliability forecasting, various signal processing and control system applications, and several 

other applications.  Non-traditional time series prediction methods are necessary for these types 

of applications due to the highly non-linear aspects of the data and processes.  

Support Vector Regression (SVR) research continues to be a viable approach in the 

prediction of time series data in non-linear systems.  Many methods and alternatives exist in the 

design of SVRs and a great deal of flexibility is left to the designer in its implementation.  The 

underlying motivation behind the development of CMPSO is to help the designer in defining 

implementation details and in providing a mechanism by which to tune SVR for a wide variety 

of time series prediction and regression problems. 

CMPSO is a unique fusion of Support Vector Regression and Particle Swarm 

Optimization algorithms that attempts to optimize SVR free parameters , C, and , while 

minimizing the need for excess computational resources by reducing the required solution space.  

This research provides detailed analysis of the CMPSO technique and also provides proof of 
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performance by testing CMPSO performance against many different and diverse data sets.  In all 

the presented sample cases, CMPSO has met or exceeded the performance of many other 

different time series regression and prediction algorithms while not requiring any algorithm 

tuning or modification.  No user intervention is required to execute CMPSO.  Based on results 

shown in this research, CMPSO is a viable SVR based time series regression and estimation 

approach as compared to other comparable SVM/SVR approaches as well as Neural Network 

based algorithms.   

CMPSO has also demonstrated good performance against artificial data series as well as 

real world data.  CMPSO has demonstrated good performance against financial market data such 

as the S&P 500 example shown in chapter 6.  Against Mackey-Glass non-linear data, CMPSO 

performed well against other similar algorithms in the MSE sense.  As compared to real world 

applications such as electrical load forecasting, CMPSO would have placed at least third in the 

EUNITE competition.  Its performance based on more recent publications using EUNITE data 

shows that it is at least within one percentage point from a MAPE performance measure 

standpoint.  CMPSO would have won the CATS competition, not only against the applicants in 

the original contest, but also against more recent time series regression and prediction 

algorithms. 

7.2   Future Work 

There are several topics of advance research that can be considered beyond the CMPSO 

formulation: 

 Kernel Function Selection: The presented research used a Radial Basis Function 

as the Kernel for the SVR implementation, but as stated in Chapter 3, there are 

other functions that could be used or possible a combination of Kernel Functions. 
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 PSO Parameter Tuning: The computational performance aspects of the CMPSO 

software implementation were not in scope for this research, but alternative 

implementations (software hosting) on other computing platforms may result in 

other PSO parameter settings. 

 CMPSO Distributed Computing: The use of multiple computing platforms to 

simultaneously employ different swarms could be considered to further increase 

the computational efficiency of the process and possibly handle much larger data 

sets in a smaller amount of time. 

 Selection of Alternative Loss Functions: The SVR formulation in Chapter 3 

assumed one kind of loss function for the dual objective function.  Other functions 

exist and could potentially be used as part of the CMPSO framework.  This was 

evident in the EUNITE competition data that used a least squares type function. 

 Multi-Dimensional Input Data: The focus of this research has been the two 

dimensional case where there is only one independent variable.  CMPSO and the 

SVR implementation can also be altered to handle multi-dimensional input 

vectors, where a vector could be a set of other quantized information or data 

regarding the dependent variable or underlying process. 

 Pattern Recognition Applications: This research is for time series prediction and 

regression applications.  The same methodology could be used for SVM pattern 

recognition applications. 
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