
www.manaraa.com

University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

3-13-2015

Constrained Motion Particle Swarm Optimization
for Non-Linear Time Series Prediction
Nicholas Sapankevych
Unversity of South FLorida, nsapankevych@aol.com

Follow this and additional works at: https://scholarcommons.usf.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Sapankevych, Nicholas, "Constrained Motion Particle Swarm Optimization for Non-Linear Time Series Prediction" (2015). Graduate
Theses and Dissertations.
https://scholarcommons.usf.edu/etd/5569

https://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F5569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F5569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F5569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F5569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.usf.edu%2Fetd%2F5569&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

www.manaraa.com

Constrained Motion Particle Swarm Optimization for Non-Linear Time Series Prediction

by

Nicholas I. Sapankevych

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

Department of Electrical Engineering

College of Engineering

University of South Florida

Major Professor: Ravi Sankar, Ph.D.

Thomas Weller, Ph.D.

A. D. Snider, Ph.D.

Kandethody M. Ramachandran, Ph.D.

Rangachar Kasturi, Ph.D.

Date of Approval:

March 13, 2015

Keywords: Support Vector Regression, Convex Optimization, EUNITE, Competition for

Artificial Time Series, Mackey-Glass

Copyright © 2015, Nicholas I. Sapankevych

www.manaraa.com

DEDICATION

This dissertation is dedicated to my wife Susan, to my children Tyler and Alex, to my

sisters Kathryn and Anne Marie, and to my brother Jim, and to my parents William and Karen

Sapankevych.

www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank my advisor Prof. Ravi Sankar for his support and patience in

guiding me through my Ph. D studies. His continued guidance, advice and generosity have been

invaluable throughout my experience at USF. I am also very grateful for the effort spent by my

dissertation committee members Prof. Weller, Prof. Snider, Prof. Ramachandran, and Prof.

Kasturi in helping me reach my goal and for the time they spent in broadening my engineering

experience.

I would also like to thank my employer, Raytheon, for making this opportunity a reality.

To all of my fellow colleagues at Raytheon who have supported and encouraged me over the

years, thank you.

Many thanks to all of the engineers and schoolmates I have had the privilege to meet at

our Interdisciplinary Communication Networking and Signal Processing (iCONS) group at USF.

Their commentary and feedback regarding my work is always appreciated.

To my family for their sacrifice and understanding during my time of study, thank you

for your prayers and thoughts.

Thanks be to God for giving us the light of knowledge and making all things possible.

www.manaraa.com

i

TABLE OF CONTENTS

LIST OF TABLES iii

LIST OF FIGURES iv

ABSTRACT vi

CHAPTER 1 INTRODUCTION

1.1 Time Series Prediction

1.2 Challenges in Time Series Prediction

1.3 Research Motivation

1.4 Contributions and Organization

1

1

2

2

3

CHAPTER 2 SVM BASED TIME SERIES PREDICTION AND BENCHMARKS

2.1 Time Series Prediction and Support Vector Machines

2.1.1 Support Vector Machine Applications

2.1.2 Support Vector Machines and Particle Swarm Optimization

2.2 Time Series Prediction Performance Benchmarks

2.2.1 Mackey-Glass Data

2.2.2 EUNITE Competition

2.2.3 CATS Data

8

8

8

10

11

11

12

12

CHAPTER 3 SUPPORT VECTOR REGRESSION

3.1 Introduction to Support Vector Machines

3.2 Time Series Regression

3.3 Kernel Functions

3.4 Primal Objective Function Formulation

3.5 Dual Objective Function Formulation

3.6 SVR Optimality, Architecture and Free Variables

14

14

18

21

24

28

32

CHAPTER 4 PARTICLE SWARM OPTIMIZATION

4.1 SVR Parameter Optimization

4.2 Introduction to Particle Swarm Optimization

4.3 Particle Swarm Optimization Terminology

4.4 Particle Swarm Optimization Algorithm

4.5 PSO Boundary Conditions

4.6 Parameter Selection

36

36

38

39

40

48

51

www.manaraa.com

ii

CHAPTER 5 CONSTRAINED MOTION PARTICLE SWARM OPTIMIZATION

5.1 Motivation and Objectives

5.2 Support Vector Regression Dual Objective Function Reformulation

5.3 Particle Initialization and Constrained Motion

5.4 PSO Boundary Condition Selection

5.5 PSO Fitness Function, Iteration Bounds and Stagnation

5.6 Time Series Data Scaling

5.7 CMPSO Framework Summary and Parameter Settings

53

53

54

57

60

61

64

65

CHAPTER 6 PERFORMANCE METRICS AND RESULTS

6.1 Statistical Performance Metrics

6.2 Computing Environment

6.3 Computational Efficiency

6.4 Arbitrary Function Analysis

6.4.1 SINC Function

6.4.2 SINC Function with Missing Data

6.4.3 S&P 500 Data

6.5 Benchmark and Competition Data Performance

6.5.1 Mackey-Glass Benchmark Data

6.5.2 EUNITE Competition Data

6.5.3 CATS Competition Data

71

71

74

75

80

80

81

81

83

83

89

96

CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

7.2 Future Work

103

103

104

REFERENCES 106

www.manaraa.com

iii

LIST OF TABLES

Table 1.1 Summary of Advantages and Challenges of Classical, ANN Based,

and SVR Time Series Prediction Methods

7

Table 3.1 A Summary of SVR Parameters, Processes and Functionality 35

Table 4.1 PSO Particle Definitions and Solution Space Boundaries 41

Table 4.2 PSO Boundary Condition Advantages and Challenges 50

Table 5.1 General Time Series Regression and Estimation Functional

Objectives

55

Table 5.2 CMPSO Parameter List 70

Table 6.1 CMPSO vs. Alternative Optimization Implementation 78

Table 6.2 CMPSO Performance vs. Alternative Optimization Implementation 79

Table 6.3 CMPSO Prediction Performance for Mackey-Glass Data 88

Table 6.4 CMPSO Prediction Performance (MSE) vs. Other Techniques 89

Table 6.5 CMPSO EUNITE Prediction Performance 93

Table 6.6 CMPSO EUNITE Prediction Performance vs. Post Competition

SVM Methods

97

Table 6.7 CMPSO CATS Prediction Performance vs. Top Ten Entries and

Recent Publications

99

www.manaraa.com

iv

LIST OF FIGURES

Figure 3.1 Pattern Recognition Example with Two Class Data in Two

Dimensions

15

Figure 3.2 Linear Pattern Recognition Example with Two Class Data in Two

Dimensions Illustrating Support Vectors and Outliers

17

Figure 3.3 Support Vector Regression Linear Approximation Example

20

Figure 3.4 Support Vector Regression Non Linear Approximation Example

21

Figure 3.5 Time Series Example Mapped in to Feature Space

22

Figure 3.6  Insensitive Loss Function

27

Figure 3.7 SVR Architecture

34

Figure 4.1 Particle Motion Through Solution Space

47

Figure 4.2 General PSO Optimization Process

48

Figure 4.3 PSO Boundary Condition Illustration

51

Figure 5.1 Particle Lagrange Multiplier Initialization Process

58

Figure 5.2 CMPSO Process Framework

66

Figure 5.3 CMPSO Input Data Scaling

66

Figure 5.4 CMPSO Particle Parameter Initialization

67

Figure 5.5 CMPSO Particle Fitness Evaluation

67

Figure 5.6 CMPSO Particle Motion Update

68

Figure 5.7 CMPSO Particle Re-Initialization

68

Figure 5.8 CMPSO Final Processing

69

www.manaraa.com

v

Figure 6.1 Illustration of Estimator Bias and Consistency

73

Figure 6.2 CMPSO Software Architecture

76

Figure 6.3 Example Time Series for Computational Efficiency Analysis

77

Figure 6.4 Comparison of CMPSO Architecture vs. Typical Optimization Setup

77

Figure 6.5 CMPSO Approximation of SINC Function

81

Figure 6.6 CMPSO Approximation of SINC Function with Missing Data

82

Figure 6.7 CMPSO Approximation of S&P 500 Data

83

Figure 6.8 Mackey-Glass Data Example (First 1000 Seconds)

84

Figure 6.9 Mackey-Glass Data Example (First 200 Seconds Used for Evaluation)

85

Figure 6.10 CMPSO Mackey-Glass Data Estimation

87

Figure 6.11 CMPSO Mackey-Glass Data Prediction

88

Figure 6.12 Mean of Maximum Power by Day of the Week for 1997 and 1998

90

Figure 6.13 Maximum Power by Day of the Week for January 1997 and January

1998

91

Figure 6.14 Scatter Plot of the Difference in Power and Difference in Temperature

for 360 Days in 1997 and 1998 (Time Aligned by Day of the Week)

92

Figure 6.15 CMPSO EUNITE Prediction Results

94

Figure 6.16 CMPSO EUNITE Results as Compared to Top 9 Competitors (from

[62])

95

Figure 6.17 CATS Data

98

Figure 6.18 CMPSO Estimate for CATS Data Set 1

100

Figure 6.19 CMPSO Estimate for CATS Data Set 2

100

Figure 6.20 CMPSO Estimate for CATS Data Set 3

101

Figure 6.21 CMPSO Estimate for CATS Data Set 4

101

Figure 6.22 CMPSO Estimate for CATS Data Set 5 102

www.manaraa.com

vi

ABSTRACT

Time series prediction techniques have been used in many real-world applications such as

financial market prediction, electric utility load forecasting, weather and environmental state

prediction, and reliability forecasting. The underlying system models and time series data

generating processes are generally complex for these applications and the models for these

systems are usually not known a priori. Accurate and unbiased estimation of time series data

produced by these systems cannot always be achieved using well known linear techniques, and

thus the estimation process requires more advanced time series prediction algorithms.

One type of time series interpolation and prediction algorithm that has been proven to be

effective for these various types of applications is Support Vector Regression (SVR) [1], which

is based on the Support Vector Machine (SVM) developed by Vapnik et al. [2, 3]. The

underlying motivation for using SVMs is the ability of this methodology to accurately forecast

time series data when the underlying system processes are typically nonlinear, non-stationary

and not defined a-priori. SVMs have also been proven to outperform other non-linear techniques

including neural-network based non-linear prediction techniques such as multi-layer perceptrons.

As with most time series prediction algorithms, there are typically challenges associated

in applying a given heuristic to any general problem. One difficult challenge in using SVR to

solve these types of problems is the selection of free parameters associated with the SVR

algorithm. There is no given heuristic to select SVR free parameters and the user is left to adjust

these parameters in an ad hoc manner.

www.manaraa.com

vii

The focus of this dissertation is to present an alternative to the typical ad hoc approach of

tuning SVR for time series prediction problems by using Particle Swarm Optimization (PSO) to

assist in the SVR free parameter selection process. Developed by Kennedy and Eberhart [4-8],

PSO is a technique that emulates the process living creatures (such as birds or insects) use to

discover food resources at a given geographic location. PSO has been proven to be an effective

technique for many different kinds of optimization problems [9-11].

In this dissertation, the general problems associated with time series prediction and their

associated algorithms are presented first. Second, both the SVR and PSO algorithms are

discussed in detail which leads to the third part, formulating the fusion of both SVR and PSO

algorithms, called Constrained Motion Particle Swarm Optimization (CMPSO). CMPSO not

only provides a method for SVR free parameter selection, but also provides computational

efficiency benefits. Finally the CMPSO algorithm is benchmarked using both artificially

generated and real world data and is compared to other published non-linear time series

prediction algorithms against the same benchmark data. Specifically, CMPSO performance is

analyzed against artificial, arbitrary functions as well as real world financial market index data

(S&P 500). CMPSO is also benchmarked against Mackey-Glass non-linear data, real power

company electrical load data and another artificial time series used for a competition. CMPSO

performed well and also would have been placed first in at least one of the time series prediction

competitions.

www.manaraa.com

1

CHAPTER 1: INTRODUCTION

1.1 Time Series Prediction

Fundamentally, the goal of time series prediction is to estimate some future time series

value based on current and past data samples. Mathematically stated in Equation (1.1):

 ),...)(),(),((ˆ ctxbtxatxftx t  (1.1)

where, in this specific example, x̂ is the predicted value of a (one dimensional) discrete time

series x. The variables a, b, c, etc., are (positive) time offsets and t is a positive number greater

or equal to zero representing a future time for an estimated sample.

The objective of time series prediction is to find a function f(x) such that x̂ , the predicted

value of the time series at a future point in time is unbiased and consistent. An unbiased

estimator [12] is one where the expected value of the estimate of x should approach the actual

value of x. A consistent estimator [12] is one where the variance of the predicted value will

approach zero as the number of samples increases and is shown in Equation 1.2:

0])ˆ[(lim 2 



xxE

N

N (1.2)

where x is the time series function to be estimated, x̂ is the estimated function, N is the number

of time series samples, and E[.] is the expected value operator.

www.manaraa.com

2

An unbiased and consistent estimator will tend to have an expected value of the

difference in the predicted and actual functions as well as the variance of this difference both

approach zero simultaneously. Specific time series prediction metrics related to bias and

consistency will be discussed in Section 5.1.

Estimators generally fall into two categories: linear and non-linear. Over the past several

decades, a vast amount of technical literature has been written about linear prediction: the

estimation of a future value based on the linear combination of past and present values. Real

world time series prediction applications generally do not fall into the category of linear

prediction. Instead, they are typically characterized by non-linear models.

1.2 Challenges in Time Series Prediction

There are many different kinds of time series prediction algorithms, each one performing

differently depending on the type of data being analyzed. Table 1.1 highlights the benefits and

challenges for many different kinds of prediction algorithms, including SVR.

Although the advantages of SVR have been shown to be significant as compared to other

algorithms for time series prediction, the challenge associated with selecting SVR free

parameters is considerable.

1.3 Research Motivation

Non-linear time series regression and prediction applications range from financial market

prediction, electrical load forecasting, dynamic control system design, to a vast array of other

real world problems. As stated earlier, there are many methods to solve such problems including

Auto Regressive Moving Average (ARMA) algorithms (in many different forms) [12, 13],

Kalman Filtering (also in many different forms) [12-17], Artificial Neural Networks (ANNs) [18,

19], Support Vector Machines (SVMs) and SVR [20-45], as well as several others.

www.manaraa.com

3

Any of the above algorithms can be applied to real world problems, some with greater

success than others. In many cases the success of the algorithm for a given application depends

heavily on algorithm “tuning”: the process of optimizing the algorithm for the specific problem

space. Some examples of “tuning” include model selection (as with Kalman Filtering) and free

variable constant selection (as with SVR). The employment of some algorithms such as SVR

further requires the use of a Quadratic Program (QP) to solve for the given algorithmic

parameters, thus increasing the computational complexity of these kinds of approaches [21, 46-

50].

Although SVMs/SVR algorithms are generally considered computationally complex, it

has been well documented that they are effective for time series prediction applications [1] as

well as regression (interpolation) applications. The challenge remains to optimize the SVR free

parameters effectively while accurately estimating the time series. Given the advantages of

using SVR for time series prediction, the motivation of this research is to identify an

optimization algorithm that can address the SVR parameter tuning challenge while

simultaneously adapt to a wide variety of applications.

1.4 Contributions and Organization

This dissertation proposes an SVR based approach for both time series prediction and

regression while simultaneously using Particle Swarm Optimization (PSO) [51-60] to optimize

SVR free parameters. Although PSO based SVR optimization techniques have been developed

into one approach, the methodology presented in this research is unique in that the process

necessary to compute an SVR estimate of a time series is integrated with the PSO optimization

formulation, making the overall computation more efficient. By constraining the motion of the

particles, there is a reduction in the solution space required to examine to find an optimal

www.manaraa.com

4

solution. In addition, this PSO and SVR framework is adaptable to a wide variety of applications

without the need of the user to tune any parameters. These specific algorithmic features detailed

in this research are unique and have not been presented before in literature.

As with any time series estimation method, this approach will be benchmarked against

other well-known time series sets for comparison to other published algorithms. It will be shown

that the exact same framework, without any modification, will produce a time series estimate for

many different kinds of problems. The applications range from common mathematical time

series functions, to more complicated real world applications such as stock market index

prediction, power load forecasting, and other synthetic data interpolation and extrapolation

applications.

In summary, the main contributions and results of this research include:

 A general heuristic for selecting required SVR user defined parameters.

 A computationally more efficient method for PSO based SVR user defined

parameter optimization.

 A generic framework adaptable to many different one dimensional time series

regression and prediction problems that does not require user adjustments.

 A time series interpolation and extrapolation method that produced significant

results as compared to other similar approaches. The results are based against

worldwide time series regression competitions, in which CMPSO provided a

goodness of fit that met or in some cases exceeded all other competitive

algorithms.

The organization of the dissertation is as follows:

www.manaraa.com

5

In Chapter 2, we discuss the wide variety of real world time series prediction applications

associated with SVM and SVR, along with PSO based optimization of SVM/SVR algorithms.

We also introduce time series prediction benchmarks and summarize their use as evaluation tools

for any type of time series prediction method.

In Chapter 3, we review the formulation of SVR and identify parts of the formulation that

are adapted for optimization using PSO. We will discuss the concept of primal and dual

objective functions as well as the use of kernel functions to cast time series data into another

form.

In Chapter 4, we review the formulation of PSO. Specifically, we will review the

terminology and definitions associated with PSO, the PSO framework and process, and some

specific parameters that will be linked to SVR.

In Chapter 5, we present the CMPSO framework, which includes the fusion of both SVR

and PSO algorithms for time series prediction and interpolation. Additionally, we discuss the

advantages of this approach including the flexibility in adapting this technique to a wide variety

of different time series applications.

In Chapter 6, we test the CMPSO algorithm against both artificial and real world time

series data and compare its performance to other published algorithms. First, we define time

series prediction metrics by which time series prediction algorithms are measured. We briefly

discuss computational complexity in the context of the integrated SVR/PSO CMPSO approach

vs. other typical approaches where SVR optimization is executed outside the PSO optimization

routine. Next we illustrate CMPSO performance with an arbitrary function, an arbitrary function

missing data and a real world stock market index example. Then we test CMPSO’s performance

against other published algorithms. The first example illustrates CMPSO performance using a

www.manaraa.com

6

common, artificial time series benchmark called Mackey-Glass data [61] and is compared to

other comparable time series prediction algorithms. The second example shows CMPSO

performance using the European Network on Intelligent Technologies for Smart Adaptive

Systems (EUNITE) competition data [62, 63]. The goal of EUNITE is to test several algorithms

by predicting maximum electrical power loads for the East-Slovakia Power Distribution

Company for one future month given two prior years’ worth of daily electrical load data. The

last example illustrates CMPSO performance via Competition on Artificial Time Series (CATS)

data where several algorithms were to predict (interpolate) four sets of 20 missing data points out

of a total of 4980 time series samples [64]. In addition, the same algorithms were to predict

(extrapolate) the last 20 time series data points of the CATS data.

In Chapter 7, we summarize our findings and propose recommended further research

areas.

www.manaraa.com

7

Table 1.1: Summary of Advantages and Challenges of Classical, ANN Based, and SVR Time

Series Prediction Methods

Time Series

Prediction

Method

Advantages

Challenges

Autoregressive

Filter [12,13]

- Can be computationally efficient for

low order models

- Convergence guaranteed

- Minimizes mean square error by

design

- Assumes linear, stationary

processes

- Can be computationally

expensive for higher order

models

Kalman Filter

[12-17]

- Computationally efficient by design

- Convergence guaranteed

- Minimizes mean square error by

design

- Assumes linear, stationary

processes

- Assumes process model is

known

Multi-layer

Perceptron

[18,19]

- Not model dependent

- Not dependent on linear, stationary

processes

- Can be computationally efficient

(feed forward process)

- Number of free parameters

large

- Selection of free parameters

usually calculated

empirically

- Not guaranteed to converge

to optimal solution

- Can be computationally

expensive (training process)

SVR [20-45] - Not model dependent

- Not dependent on linear, stationary

processes

- Guaranteed to converge to optimal

solution

- Small number of free parameters

- Can be computationally efficient

(estimation process)

- Selection of free parameters

usually calculated

empirically

- Can be computationally

expensive (training process)

www.manaraa.com

8

CHAPTER 2: SVM BASED TIME SERIES PREDICTION AND BENCHMARKS

2.1 Time Series Prediction and Support Vector Machines

Time series prediction techniques have been used in many real-world applications such as

financial market prediction, electric utility load forecasting, weather and environmental state

prediction, and reliability forecasting. The underlying system models and time series data

generating processes are generally complex for these applications and the models for these

systems are usually not known a priori. Accurate and unbiased estimation of the time series data

produced by these systems cannot always be achieved using well known linear techniques, and

thus the estimation process requires more advanced time series prediction algorithms.

 The underlying motivation for using SVMs is the ability of this methodology to

accurately forecast time series data when the underlying system processes are typically

nonlinear, non-stationary and not defined a-priori. SVMs have also been proven to outperform

other non-linear techniques including neural networks. Traditionally Support Vector Machines

(SVMs), as well as other machine learning algorithms are used for classification in pattern

recognition applications. These learning algorithms have also been applied to general regression

analysis: the estimation of a function by fitting a curve to a set of data points. The application of

SVMs to general regression analysis case is called Support Vector Regression (SVR). A detailed

general survey of SVM applications for time series can be found in [1].

2.1.1 Support Vector Machine Applications

Of all the practical applications using SVR for time series prediction, financial data time

series prediction appears to be one research area that has a considerable amount of research

www.manaraa.com

9

interest. The inherent noisy, non-stationary and chaotic nature of this type of time series data

appears to lend itself to the use of non-traditional time series prediction algorithms such as SVR.

As seen in references [65] through [85] alone, there are many different SVM based approaches to

many different kinds of financial data. All of the research noted here has at least one thing in

common (other than an SVM based solution): there is no given heuristic to tune the required set

of SVR user defined parameters. The cited research uses many alternative optimization

algorithms, such as genetic algorithms, to assist the SVR process in finding an optimal curve fit.

The methods presented in this research tend to include an  insensitive loss function as well as a

radial basis kernel function, both of which will be discussed in more detail in Chapter 3.

Another common thread in the research is the reliance of the stated methods to use specific

Quadratic Programming (QP) methods to solve for the SVR estimation.

A non-linear prediction problem found in power systems research is the forecasting of

electrical power consumption demands by consumers. There are many beneficial aspects to the

accurate prediction of electrical utility load forecasting including proper maintenance of

electrical energy supply, the efficient utilization of electrical power resources, and the proper

administration and dissemination of these resources as related to the cost of these resources to

the consumer. Power load forecasting is yet another widely researched application for SVR. As

with the financial market forecasting citations, the SVR based power load prediction applications

also tend to use an e insensitive loss function, a radial basis kernel function, and publically

available QP programs [46-50].

Although the two research areas mentioned above appear to be the most prevalent

applications for SVR, there are many other real world applications such as control systems and

www.manaraa.com

10

signal processing, machine reliability forecasting, meteorological data forecasting, and many

others [1].

2.1.2 Support Vector Machines and Particle Swarm Optimization

As mentioned in the previous section, there are a wide variety of SVM/SVR based real

world applications. One of the common threads found in published SVR based solutions is that

there is no one heuristic to tune SVR for any given application. However, there have been many

applications using Swarm Optimization (SO) based techniques, including Particle Swarm

Optimization (PSO), to assist in finding an optimal SVM/SVR based time series estimate. This

dissertation explores a unique implementation of PSO and SVR that will represent a general

framework for solving these kinds of problems.

Wang et al. [51] uses PSO to solve for the three user defined SVR parameters, error

sensitivity control parameter, a regularization constant, and a user defined parameter associated

with the SVR kernel function (often referred to as , C, and  respectively; these parameters will

be discussed in detail in Chapter 3) for a real world application (coal working face gas

concentration forecasting). This is a similar approach to the presented research in this

dissertation, although the SVR optimization in this citation still requires a separate QP algorithm.

Although Wang presents a feasible approach, there is still the computational overhead associated

with using SVR and PSO in a non-integrated methodology.

There are many other recent and similar SVR and PSO combined approaches that have

been published recently that use PSO to optimize SVR free parameters [52 through 60]. The

applications in these publications range from power load forecasting, traffic flow optimization, to

benchmark data estimation, and many others. There are also other general modifications to the

algorithms in the citations, but the core processing algorithms are based on both SVM/SVR and

www.manaraa.com

11

PSO. All of these publications show that a PSO based approach to SVR parameter tuning is

viable and effective for many different problems. However, none of the researched publications

address the computational overhead involved with using a QP solver to find an appropriate SVR

solution. Also, there is no explicit discussion of the necessary data preprocessing required to

adapt any given approach to any given problem. The research in this dissertation addresses both

of these challenges.

2.2 Time Series Prediction Performance Benchmarks

As with any algorithm, there are usually defined methods by which an algorithm can be

evaluated for performance. Data sets referred to as benchmarks are developed and used

worldwide in order to facilitate the evaluation and comparison of any given algorithm. For time

series prediction and regression based applications, there are many benchmark data sets available

for use. This dissertation focuses on three common benchmarks that are found in many

algorithmic performance evaluations: Mackey-Glass data [61], EUNITE Competition data [62,

63] and CATS competition data [64]. A brief description is given below with detailed numeric

results and comparisons to other published approaches are given in Chapter 6.

2.2.1 Mackey-Glass Data

Mackey-Glass data is highly non-linear chaotic time series data that is used to evaluate

time series prediction and regression algorithms. It should be noted that it is synthetic data and

can be generated by solving a specific, time delayed differential equation [61].

Many SVR based methods researched use Mackey-Glass data as the reference data set to

estimate performance [25, 28, 34, 86 through 91]. The PSO/SVR methodology described in this

dissertation is compared to eight different algorithms that use Mackey-Glass benchmark data to

show a comparison of performance. Several of the methodologies used for comparison use some

www.manaraa.com

12

form of SVM/SVR as part of the approach. Section 6.5.1 details the performance comparisons

between this research and other published approaches.

2.2.2 EUNITE Competition

The Mackey-Glass benchmark data set is a common data set used to evaluate time series

prediction problems and it is synthetically generated from the solution of a differential equation.

Another common benchmark data set is from the European Network on Intelligent Technologies

for Smart Adaptive Systems (EUNITE; see references [62, 63]) competition which is seen in

many publications. Unlike Mackey-Glass data, this data is from real world power utility

company loading data. The goal of the competition is to predict one month of maximum power

loads based on the prior two years of both daily power load data as well as daily temperature

data.

Many of the approaches used are SVR and Artificial Neural Network (ANN) based

approaches. The PSO/SVR approach shown in this research is compared to the top ten results of

the competition [92-101]. In addition, many recent publications have used this data as a

benchmark for their algorithm design and performance [102-106]. Again, the PSO/SVR

approach performance is compared to these recently published results for comparison. More

details are provided in Section 6.5.2.

2.2.3 CATS Data

The Competition for Artificial Time Series (CATS) [64] is the last benchmark data this

research is tested against. As with the EUNITE competition, CMPSO performance is compared

to the top ten contestants [107-116] as well as recent publications using this dataset for

evaluation [117-121].

www.manaraa.com

13

The CATS competition included the estimation of four 20 point sets of missing data gaps

in a time series of 4980 points. In addition, the last 20 data points are extrapolated and compared

to the original data for scoring. The PSO/SVR approach is compared to the top ten algorithms

submitted to the competition as well as several recent publications and algorithms that use the

CATS benchmark data for reference.

In conclusion, there is significant research interest in advanced learning methods applied

to time series prediction and estimation problems. It has been well documented that PSO can be

applied to aid in the optimization of an SVR based approach. It is also well documented that

SVR approaches, including the one presented in this research, perform well against many

different data sets, including standard benchmark data sets described in this chapter. As will be

seen in this dissertation, the core of the time series regression formulation is Support Vector

Regression.

www.manaraa.com

14

CHAPTER 3: SUPPORT VECTOR REGRESSION

3.1 Introduction to Support Vector Machines

SVM is a pattern recognition algorithm based on statistical learning theory developed by

Vapnik and Chervonenkis [2, 3]. SVMs are a form of neural network and employ a supervised

learning training paradigm. Neural network based algorithms have many significant benefits and

properties [18]:

 Nonlinearity: an important property that can adapt to non-linear inputs.

 Input-Output Mapping: Inputs to SVM are weighted as training samples are

presented to the SVM. As more training samples are presented, the SVM will

adapt the weights based on an expected response. This is essentially the

supervised learning paradigm.

 Adaptive: SVMs can change, or adapt, to different training inputs dynamically.

 Application Independence: Regardless of the underlying processes used to

generate the input and desired output, the same fundamental architecture can be

used.

 Sparse Data Representation: Typically the number of support vectors required to

define the SVM or SVR function is significantly less than the total number of

training points required.

Many books, journal publications, and electronic references currently exist regarding the

formulation of SVM as well as SVR. The following formulations of SVM and SVR found in

www.manaraa.com

15

this chapter are based on Vapnik’s reference books [2, 3], a reference book by Smola and

Scholköpf [20], an SVM/SVR overview with references to Quadratic Programing (QP) specific

to SVM by Cristianini and Shawe-Taylor [21], a rigorous tutorial by Smola and Scholköpf [22],

and several other relevant SVM/SVR references found in [23-37]. There are also many web

based references available in references [38-45].

The fundamental purpose of an SVM is to mathematically define a surface that separates

two different classes of data. This surface is typically called a hypersurface. As an example,

data that lies on one side of the hypersurface will be numerically classified as +1 and data that

lies on the opposite side will be represented by a -1. Figure 3.1 illustrates a simple two

dimensional classification problem with two classes of data.

Figure 3.1: Pattern Recognition Example with Two Class Data in Two Dimensions

In Figure 3.1, the red X’s represent one class of data and the blue O’s represent the other.

These two sets of two dimensional data as defined by the variables X1 and X2, are separated by a

www.manaraa.com

16

non-linear curve as illustrated by the green line between the individual data points. The green

line separating the two data sets is the hypersurface and is computed by the SVM. Each data

point in this example would be one sample of a training data set that would be presented to the

SVM in order to generate the separating hypersurface. Equation 3.1 defines the training data set

as:

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒𝑠: {(𝒙𝑖, 𝑑𝑖)}|𝑖=1
𝑁 (3.1)

where xi is any given point location illustrated in Figure 3.1, di are the classifications for each

point (+/- 1 as an example), and N are the total number of points in the training set.

The SVM formulation starts with an assumption of linearly separable data as represented

by the equation of a linear hypersurface shown in Equation 3.2:

𝑓(𝒙) = ∑𝑤𝑖𝒙𝑖

𝑁

𝑖=0

+ 𝑏 (3.2)

where xi is the multi-dimensional variable, wi are real valued weights and b is a bias term offset.

For the case of a two class pattern recognition problem, Equations 3.3 and 3.4 represent the

decision making process for any given data point:

 ∑𝑤𝑖𝒙𝑖

𝑁

𝑖=0

+ 𝑏 ≥ 0 𝑓𝑜𝑟 𝑑𝑖 = +1 (3.3)

∑𝑤𝑖𝒙𝑖

𝑁

𝑖=0

+ 𝑏 < 0 𝑓𝑜𝑟 𝑑𝑖 = −1
(3.4)

Figure 3.2 illustrates an example of linearly separable data. In this example, the data can

be separated by the function defined in Equation 3.2 for some optimal set of w and b. Also

illustrated is a subset of the training points located on the green dashed lines which lay some

www.manaraa.com

17

distance  from the optimal hypersurface. Data points that are found to lie on these dashed lines

are known as support vectors.

Figure 3.2: Linear Pattern Recognition Example with Two Class Data in Two Dimensions

Illustrating Support Vectors and Outliers

It will be shown that the support vectors and their associated weights (plus a bias term)

are all that is required to define the separating hypersurface. Also shown in Figure 3.2 are

outliers. These are data points that fall on the opposing classification side of the separating

hypersurface and would normally be classified incorrectly. The data points are said to be

inseparable. The SVM (and SVR) formulation allows for such errors and the handling of these

errors will be addressed later in this chapter.

Equation 3.5 below defines the equation for the optimal hypersurface f0(x), rewritten as

the dot product between a set of optimal weights and the independent variable (vector) x:

𝑓0(𝒙) = 𝒘0 ∙ 𝒙 + 𝑏0 (3.5)

www.manaraa.com

18

The goal is to find the optimal hypersurface such that the distance between any given

point and the hypersurface is maximized. From [18], Equation 3.6 shows that the distance r

from any given point x to the hypersurface f0(x) is defined as:

𝑟 =
𝑓0(𝒙)

‖𝒘0‖
 (3.6)

where ||w0|| represents the Euclidean norm of the optimal weight vector. It turns out support

vectors lay on the boundary of the equality constraint in Equation 3.3 and a similar equality

Equation in 3.4 for both cases where d is +/- 1 [18]. Given this, the optimal distance for support

vectors can be defined in Equation 3.7:

𝑟 =
𝑓0(𝒙

𝑺)

‖𝒘0‖
=

{

1

‖𝒘0‖
𝑖𝑓 𝑑𝑆 = +1

−
1

‖𝒘0‖
𝑖𝑓 𝑑𝑆 = −1

 (3.7)

where the superscript S denotes a support vector.

Given the distance r from a support vector of each class to the optimal hypersurface, the

separation margin can be defined as twice the distance r from one class to the other class. In

summary, optimizing SVM for pattern recognition requires maximizing the separation between

classes of data which is determined by minimizing the Euclidian norm of the weight vector w.

3.2 Time Series Regression

The SVM framework outlined in Section 3.1 can now be applied to time series regression

problems. First, we define time series regression as “a method for fitting a curve (not necessarily

a straight line) through a set of points using some goodness of fit criterion” [122]. The goal is to

use a similar framework as defined for SVM for time series prediction and estimation

applications. This framework will lend itself to the framework of Support Vector Regression, or

SVR.

www.manaraa.com

19

The SVM framework described in Equation 3.1 is manipulated for regression

applications by first changing the target data representation. Instead of a discrete classification

of +/- 1 represented by the variable d in Equation 3.1, we now introduce a real valued function

f(x) as shown in Equation 3.8:

𝑓(𝒙) = 〈𝒘, 𝒙〉 + 𝑏 (3.8)

where w, x, are real valued vectors, f(x) and b are real valued numbers and the 〈∙〉 notation

represents the dot product of the two vectors. For the purposes of this dissertation, we are only

going to examine data sets that are two dimensional functions, defined by the training set in

Equation 3.9:

We will use bold face letters such as x and w to represent a one dimensional vector and

subscripted variables such as xi and yi to represent individual data points.

As with the pattern recognition problem, the goal once again is to find optimal values of

w and b such that the Euclidian norm of w is minimized. The process of minimizing w is often

referred to as “flattening”. As seen in Equation 3.9, the real vector x has a one to one mapping to

a single real value y for all N training samples. Clearly the formulation in Equation 3.7 is

essentially the same as defined for pattern recognition in Equation 3.2, with the exception of the

real valued output.

The goal is to find the regression function f(x) such that it lies within an error bound  as

shown in Figure 3.3. In this example, the red points represent N training data points, the solid

green line represents the estimated function f(x) and the two dashed green lines represent the

error bound  around the estimated function f(x).

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒𝑠: {(𝑥𝑖, 𝑦𝑖)}|𝑖=1
𝑁 (3.9)

www.manaraa.com

20

Figure 3.3: Support Vector Regression Linear Approximation Example

As seen in Figure 3.3, this example shows a linear regression type problem where the

fitted curve f(x) is a straight line as defined in Equation 3.8. Again, the goal is to find f(x) such

that all of the training points fall within +/-  of f(x). As can be seen, there are two outlier points

in Figure 3.3 marked as points A and B. These points fall outside the  error bound and must be

somehow be tolerated in the SVR formulation. These cases will be explained in the primal

objective function discussion in Section 3.4.

It is clear that not every time series regression problem will have a linear form of solution

as defined in Equation 3.8. Figure 3.4 is a more typical example of a real world time series plot.

Again, the red points are the training data and f(x), shown as the green solid line, is the

approximation to those points. The dashed green lines illustrate the e error bound. Also shown

in this example are two outlier points marked A and B. Again, these conditions will be handled

in Section 3.4.

www.manaraa.com

21

Figure 3.4: Support Vector Regression Non Linear Approximation Example

It is now clear that the approximating function defined in Equation 3.8 will no longer

work for this kind of problem as a linear fit is not appropriate unless the error bounds are set to a

very high value. We would still like to use a linear formulation as stated in Equation 3.8, but a

data transformation will have to be used.

3.3 Kernel Functions

Figure 3.4 illustrates a time series regression problem where a linear curve fit will not be

suitable as an approximation. The goal is to try and maintain the SVM/time series regression

framework defined in Sections 3.1 and 3.2 where a linear approximation is used. One way of

manipulating the data is to use a transformation function that will map the training set points

(xi,yi) into what is commonly referred to as feature space. This transformation process is done to

attempt to cast the variables into another space as shown in Equation 3.10.

𝒙 = (𝑥1, … , 𝑥𝑛) → 𝜙(𝒙) = (𝜙1(𝒙),… , 𝜙𝑀(𝒙)) (3.10)

www.manaraa.com

22

where n are the number of sample data points and M is the number of dimensions in feature

space. The linear regression in Equation 3.8 can now be restated in feature space in Equation

3.11.

𝑓(𝑥) =∑𝑤𝑖𝜙𝑖(𝑥) + 𝑏

𝑀

𝑖=1

 (3.11)

We now have the same linear combination of weights and bias term representing the time

series to be estimated. Figure 3.5 illustrates the transformation of variable space.

Figure 3.5: Time Series Example Mapped in to Feature Space

Figure 3.5 illustrates how the transformation of time series data points from their original

space to an alternative feature space enables the use of the linear approximation shown in

Equation 3.8 to be used for estimation. The goal of SVR is to use an appropriate transformation

function that will allow any arbitrary time function to be translated to a space where a linear fit

would yield an accurate estimation.

www.manaraa.com

23

The SVR primal objective function formulation (described in the following section)

requires the product of a given data point cast into feature space and the training samples also

cast in to feature space to be computed. This computation, as shown in Equation 3.12, defines

the kernel function, or sometimes referred to as the inner-product kernel, which is essential to the

formulation of the SVR optimization problem. Equation 3.13 is the more general inner product

representation.

𝐾(𝑥, 𝑥𝑖) =∑𝜙𝑗(𝑥)𝜙𝑗(𝑥𝑖)

𝑀

𝑗=1

(3.12)

𝐾(𝑥, 𝑧) = 〈𝜙(𝑥), 𝜙(𝑧)〉 (3.13)

where M is the number of dimensions in feature space and i is an arbitrary index to a time series

data point.

There are several requirements and features associated with kernel functions, with some

of them listed below:

 Kernel functions must be semi-positive definite (this requirement is associated

with Mercer’s Theorem as related to kernel functions).

 Kernel functions are symmetric.

 A linear combination of kernel functions is also a kernel function.

A more exhaustive list of kernel function requirements can be found in references [22,

23].

One can now formulate an arbitrary kernel function as necessary following the

requirements stated above. For the purpose of this research, three candidate kernel functions

were considered for CMPSO. The first is typically called a polynomial kernel or polynomial

learning machine as is defined in Equation 3.14.

www.manaraa.com

24

𝐾(𝒙, 𝒙𝒊) = (𝒙
𝑻𝒙𝒊 + 1)

𝑝
 (3.14)

where i is an arbitrary index to a time series data point and p is an integer that is typically defined

a priori by the user.

The second type of kernel is one that uses the hyperbolic tangent function, sometimes

referred to as a two-layer perceptron and is shown in Equation 3.15.

𝐾(𝒙, 𝒙𝒊) = 𝑡𝑎𝑛ℎ(𝑏0𝒙
𝑻𝒙𝒊 + 𝑏1) (3.15)

where b0 and b1 are selected parameters (in some cases the selection of b0 and b1 might violate

the kernel restriction requirements).

The last kernel function considered is the radial basis function or exponential function as

shown in Equation 3.16.

𝐾(𝒙, 𝒙𝒊) = 𝑒
−
1
2𝜎2

‖𝒙−𝒙𝒊‖
2

 (3.16)

It is observed that for the vast majority of the literature reviewed for this research as

documented in [1], the radial basis function is the most widely used in all of the non-linear time

series prediction applications. It should also be noted that there is no specific mathematical or

computational complexity constraint in using this function vs. using any of the other listed

functions. A study of specific kernel function performance for time series estimation should be

considered for future research.

3.4 Primal Objective Function Formulation

Beginning with the SVM problem formulation in Section 3.1, we have defined a linear

representation of an optimal separating hypersurface between two representative classes of data.

This formulation showed that finding the optimal hypersurface meant that one had to find the

maximum separation distance between the two classes. This was equivalent to minimizing the

www.manaraa.com

25

Euclidian norm of the weights in the linear representation shown in Equation 3.2. This concept

was extended to time series regression problems where the same linear approximation was

illustrated in Equation 3.8. As it turns out, the same minimal flatness criterion for the weights is

required for the regression problem as well as the pattern recognition problem. The formulation

in Equation 3.8 is useful for applications where a linear fit to the data is sufficient; however

almost all real world applications require some sort of nonlinear curve fitting. The same

framework can be applied to nonlinear applications if the data is transformed into feature space

via the use of kernel functions as defined in Section 3.3.

Given the above nonlinear curve fitting problem and associated support vector and kernel

function techniques described previously, we can now develop what is referred to as the primal

objective function definition of SVR. The primal objective function is formulated to be a convex

optimization problem that ensures the flatness criterion is met. A convex optimization problem

is defined as finding an optimal point of some function that satisfies Equation 3.17 [123].

𝑓(𝑥∗) ≤ 𝑓(𝑥) for all x∈𝑋 (3.17)

where f(x) is a real valued function and x* is the point at which the function is the smallest.

For SVR, we formulate a convex optimization problem with two linear constraints as

shown in Equations 3.18 and 3.19.

minimize
1

2
‖𝒘‖2 (3.18)

subject to {
𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀

𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀

(3.19)

where y is a sample of the training set and f(x) is the estimation of the same sample in the

training set. The 0.5 scaling constant is presented for convenience relative to the dual objective

function formulation presented in the next section. The error bound  was shown in Figure 3.4.

www.manaraa.com

26

This type of optimization problem is also referred to as a quadratic programming problem as the

objective function, in this case the minimization of the Euclidean norm of the weights squared as

seen in Equation 3.18, is quadratic. Also associated with quadratic programs is set of linear

constraints as formulated for SVR in Equation 3.19. As stated in Section 3.2, we would like to

minimize the error associated with the difference between the actual data represented as y and

the estimated data set represented by f(x). The constraints shown in Equation 3.19 do not allow

for errors outside the  error bound. Any errors found outside this bound would make this

optimization problem infeasible to solve.

In reality, one would like to allow for some amount of error in the formulation shown in

Equation 3.18 and make the overall quadratic program have a feasible solution. This can be seen

by the errors shown in Figure 3.4 which are represented by points A and B. The error, denoted

as , is clearly outside the  error bound, violating the linear constraints in Equation 3.19. The

variable  as shown in Figure 3.4 is generally referred to as a slack variable, with the obvious

connotation for allowing errors outside the  bound. A reformulation of the quadratic function in

Equation 3.18 and the linear constraint functions in Equation 3.19 are now presented in

Equations 3.20 and 3.21.

minimize
1

2
‖𝒘‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑁

𝑖=1

 (3.20)

subject to {

𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖
𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

𝐶 > 0

(3.21)

The reformulation of the objective function in Equation 3.20 now allows for error beyond

the  bound, but at a cost. This is also reflected in the linear constraint equations shown in

www.manaraa.com

27

Equation 3.21. It should be noted that the two slack variables represented in this formulation

only represent the amount of error beyond the  error bound. Only one of the two slack variables

will be non-zero, depending if the estimated function f(x) is above or below the training value y.

The constant C is typically referred to as a regularization or capacity constant and controls the

tradeoff between the amount of slack (error) tolerated in the formulation vs. the flatness (original

objective) in the final estimation.

The quadratic programming problem stated in Equation 3.20 is related to the “soft

margin” loss function as stated in [23, 37]. The actual loss function itself, otherwise referred to

as the -insensitive loss function, is defined in Equation 3.22 and illustrated in Figure 3.6.

|𝜉| = {
0 if |𝜉| ≤ 𝜀

|𝜉| − 𝜀 otherwise
 (3.22)

Figure 3.6:  Insensitive Loss Function

From Figure 3.6, it is clearly seen that there is no loss, or penalty, for estimates that lie

within the  error bound and the error outside the e error bound grows linearly. There are many

different kinds of loss functions that can be used to manage the error that may occur beyond the 

www.manaraa.com

28

error bound. This research focuses on the  insensitive loss function as described above. It is

also the most prevalent loss function observed in the literature search for this research.

We have now formulated what is referred to as the primal objective function and its

associated linear constraints. In general, solving this type of optimization problem in its present

(primal) form can be challenging. An alternative form of the optimization problem must be

formulated.

3.5 Dual Objective Function Formulation

Solving the quadratic programming problem shown in Section 3.4 requires the use of

Lagrange multipliers. The Lagrange function L defined in Equation 3.23 is the sum of the primal

objective function in Equation 3.20 and the negative sum of all the products between the

constraints and corresponding Lagrange multipliers.

𝐿 = 𝑔1 + 𝑔2 + 𝑔3 + 𝑔4 + 𝑔5

(3.23)

𝑔1 =
1

2
‖𝑤‖2

(3.24)

𝑔2 = 𝐶∑(𝜉𝑖 + 𝜉𝑖
∗)

𝑁

𝑖=1

(3.25)

𝑔3 = −∑𝛽𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + 〈𝑤, 𝑥𝑖〉 + 𝑏)

𝑁

𝑖=1

(3.26)

𝑔4 = −∑𝛽𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏)

𝑁

𝑖=1

(3.27)

𝑔5 = −∑(𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖
∗)

𝑁

𝑖=1

(3.28)

subject to: 𝛽𝑖, 𝛽𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗ ≥ 0 (3.29)

www.manaraa.com

29

where L is the Lagrange function, N is the total number of data samples, 


 and 


 are the set

of Lagrange multipliers, and w, x, y, b, , and C are all defined in the previous section. Note

that w, b, , and * are all considered primal variables.

In order for an optimal solution to be found, the partial derivative of L with respect to

each of the primal variables has to equal zero as shown in Equations 3.30, 3.31, and 3.32.

𝜕𝐿

𝜕𝑤
= 𝑤 −∑(𝛽𝑖 − 𝛽𝑖

∗)

𝑁

𝑖=1

𝑥𝑖 = 0

(3.30)

𝜕𝐿

𝜕𝑏
=∑(𝛽𝑖

∗ − 𝛽𝑖)

𝑁

𝑖=1

= 0

(3.31)

𝜕𝐿

𝜕𝜉(∗)
= 𝐶 − 𝛽𝑖

(∗)
− 𝜂𝑖

(∗)
= 0

(3.32)

The next step is to substitute the findings in Equations 3.30, 3.31, and 3.32 into the

Lagrange function L. By combining all the terms in Equations 3.25 through 3.28 (g2 through g5)

and applying the optimality point condition in Equation 3.32, all terms associated with 


 and




 disappear in the Lagrange function. The remaining terms are gathered along with Equation

3.24 and restated as the dual objective function in Equation 3.33 along with the remaining

constraints shown in Equation 3.34.

maximize ∑𝑦𝑖(𝛽𝑖 − 𝛽𝑖
∗)

𝑁

𝑖=1

− 𝜀∑(𝛽𝑖 + 𝛽𝑖
∗) −

1

2

𝑁

𝑖=1

∑∑(𝛽𝑖 − 𝛽𝑖
∗)(𝛽𝑗 − 𝛽𝑗

∗)

𝑁

𝑗=1

𝑁

𝑖=1

〈𝑥𝑖 , 𝑥𝑗〉 (3.33)

subject to {
∑(𝛽𝑖 − 𝛽𝑖

∗) = 0

𝑁

𝑖=1

0 ≤ 𝛽𝑖, 𝛽𝑖
∗ ≤ 𝐶

(3.34)

www.manaraa.com

30

There are several important observations regarding the dual objective function

formulation:

 There are only one set of Lagrange multipliers remaining (


).

 Both the bias term b and the weights w disappear in the dual optimization

problem.

 The sum of the Lagrange multipliers is equal to zero (Equation 3.34).

In order for the dual objective formulation to be valid, the Karush-Kuhn-Tucker (KKT)

constraints (see literature sited in Section 3.1) must hold. Simply stated, the product of the

Lagrange multipliers and the primal objective function constraints must equal zero. Equation

3.35 shows the KKT constraint for the time series estimate and error bound and Equation 3.36

shows the KKT constraint for the slack variables (with a substitution for 


 from Equation

3.32).

𝛽𝑖
(∗)
(𝜀 + 𝜉𝑖

(∗)
∓ 𝑦𝑖 ± (〈𝑤, 𝑥𝑖〉 + 𝑏)) = 0

(3.35)

(𝐶 − 𝛽𝑖
(∗)
) 𝜉𝑖

(∗)
= 0

(3.36)

There are several additional observations regarding the dual optimization problem with

regards to the KKT constraints:

 The product of the Lagrange multipliers i and i* are zero as you cannot have

two non-zero slack variables for the same data point simultaneously.

 The value of the Lagrange multipliers at the optimal solution point is equal to the

capacity term C.

 Only data points that lie outside the e error bound have a corresponding Lagrange

multiplier equal to C. The remaining data points that lie within that bound have a

www.manaraa.com

31

zero Lagrange multiplier value. This means the SVR solution is sparse in the

sense that not every data point is necessary to compute a solution. The data points

that are associated with nonzero Lagrange multipliers are known as support

vectors.

The partial derivative shown in Equation 3.30 leads to another important conclusion.

Solving for w, we can now substitute Equation 3.30 into our original time series regression

estimation Equation 3.8 and formulate the SVR time series estimation equation as shown in

Equation 3.37.

𝑓(𝑥) =∑(𝛽𝑖 − 𝛽𝑖
∗)

𝑁

𝑖=1

〈𝑥, 𝑥𝑖〉 + 𝑏

(3.37)

We can now represent an approximation to a time series with only the sample (training

set) data points and the Lagrange multipliers found from the dual optimization problem (and a

bias term b). However, the formulation in Equation 3.37 is for a linear regression fit only. For a

non-linear curve fit, we can now use a kernel function as described in Section 3.3 by substituting

Equation 3.13 into Equation 3.37 as shown in Equation 3.38.

𝑓(𝑥) =∑(𝛽𝑖 − 𝛽𝑖
∗)

𝑁

𝑖=1

𝐾(𝑥, 𝑥𝑖) + 𝑏

(3.38)

Equation 3.38 is the general SVR formula for estimating any given non-linear time series.

In addition, for the CMPSO formulation (to be discussed in Chapter 5), we would like to make a

change of variables for the Lagrange multipliers as shown in Equation 3.39.

𝛼𝑖 = 𝛽𝑖 − 𝛽𝑖
∗ (3.39)

www.manaraa.com

32

Substituting the Kernel function found in Equation 3.38 and the change of variables in

Equation 3.39 into the dual optimization objective function and constraints in Equations 3.33 and

3.34 as well as the time series estimation Equation in 3.38, we now have the final version of the

SVR formulation objective function (Equation 3.40), the associated constraints (Equation 3.41),

and the SVR time series estimation function (Equation 3.42).

maximize ∑𝛼𝑖𝑦𝑖

𝑁

𝑖=1

− 𝜀∑|𝛼𝑖| −
1

2

𝑁

𝑖=1

∑∑𝛼𝑖𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 (3.40)

subject to {
∑𝛼𝑖 = 0

𝑁

𝑖=1

−𝐶 ≤ 𝛼𝑖 ≤ 𝐶

(3.41)

𝑓(𝑥) =∑𝛼𝑖

𝑁

𝑖=1

𝐾(𝑥, 𝑥𝑖) + 𝑏 (3.42)

3.6 SVR Optimality, Architecture and Free Variables

Now that we have defined both the primal and dual objective functions for SVR, we must

solve the dual objective function by finding a set of Lagrange multipliers such that the objective

function is maximized subject to its constraints. The condition of optimality for the SVR

problem can be found by finding the difference in the primal and dual objective function outputs,

otherwise known as the feasibility gap. For optimality, the feasibility gap is equal to zero as the

primal and dual optimization problems converge to the same optimal point. Equation 3.43 shows

a typical calculation of this gap (this is sometimes referred to as the duality gap, which will be

referred to with the variable ).

Duality Gap =
Primal Objective - Dual Objective

|Primal Objective| + 1
= 𝛾 (3.43)

www.manaraa.com

33

The calculation of the primal objective value in Equation 3.43 can be derived by adding

the last term in Equation 3.30 to the  slack values calculated by finding difference between the

actual data (training) point y plus the  bound and the estimate f(x). Other computational

strategies exist, including specific implementation alternatives that can be used to find the

optimal point. Regardless of implementation, the optimization problem is solved when the

primal and dual objective functions approach the same value.

A suitable duality gap value associated with the calculation in Equation 3.43 is typically

0.001; however in Chapters 5 and 6 we show that the duality gap, in a more practical sense, can

depend on the user’s requirements and can be somewhat higher than this suggested value. The

topic of techniques for finding optimal solutions, also known as quadratic program (QP) solvers,

will be discussed later in Chapter 5.

The construct of the SVR is shown in Figure 3.7. A training data set is necessary to pass

through the QP process in order to estimate the Lagrange multipliers, also noting that a specific

Kernel function must be selected along with its user defined parameters. Once the Lagrange

multipliers are found along with the bias term b, the support vectors are identified based on the

values of the Lagrange multipliers, passed through the same kernel function used in training, and

finally weighted by the Lagrange multipliers to estimate any arbitrary data point.

Table 3.1 summarizes the SVR formulation and identifies the data and processes shown

in the SVR Architecture in Figure 3.7.

The challenge with implementing SVR is the determination of the three user defined

variables , C, and . The focus of this research is to find an efficient method to determine these

values for any arbitrary non-linear time series application.

www.manaraa.com

34

Figure 3.7: SVR Architecture

www.manaraa.com

35

Table 3.1: A Summary of SVR Parameters, Processes and Functionality

Data or Process Functionality Notes

Training Set Used to train the SVR Defined as N real valued pairs (x,y).

Kernel Function Project the data into

feature space

User must define function type and

associated parameters. For this research,

the radial basis function (exponential

function) is used.

QP Solver A process that will solve

the SVR dual objective

function

User must define the capacity term C and

the error bound . Many different types of

QP solvers exist.

Lagrange Multipliers Used to weight the

output of the kernel

function to estimate a

real valued function.

Lagrange multipliers are found by the QP

process and there are typically M non zero

values where M < N. There is one

nonzero Lagrange multiplier for each

support vector.

Bias Term An offset applied to the

final time series

estimate.

Can be computed in different ways;

usually estimated to minimize the error

between estimate and truth.

Support Vectors A subset of the training

data that have associated

nonzero valued

Lagrange multipliers.

Used to compute the estimate of f(x) for

any arbitrary real valued point x.

User Defined

Parameters , C, and 

Free variables required

to be selected by the

user for any given

application

Necessary to “tune” the SVR algorithm

and its associated kernel function.

www.manaraa.com

36

CHAPTER 4: PARTICLE SWARM OPTIMIZATION

4.1 SVR Parameter Optimization

As shown in Chapter 3, SVR is a viable time series prediction and regression algorithm

that has many significant attributes. As with most time series prediction algorithms, there are

usually challenges associated with tuning an algorithm to make it effective for any given

application. SVR also has challenges in how it is tuned. As stated at the end of Chapter 3, SVR

relies on the user to define a set of parameters, sometimes referred to as free variables, in order to

work. For the purposes of this research, we are focusing specifically on the error bound , the

capacity term C, and the radial basis function parameter . Note that we have selected a specific

kernel function, the radial basis function, for this research. The optimization problem can get

more difficult if another kernel function is used as more parameters may be necessary to tune.

The problem of finding an optimal set of these parameters has been a subject of much research

and it should be noted that no one heuristic has been identified. It should also be noted that the

QP solver used to find the Lagrange multipliers (shown in Figure 3.7) is essentially an

optimization problem as well. The QP program solves for the dual objective function subject to

its constraints.

Finding the optimal set of SVR user selectable parameters (free variables) is a

mathematical optimization problem. The general form of this optimization is given in Equation

4.1 [124].

www.manaraa.com

37

maximize (or minimize) 𝑓(𝒙)

subject to:

{

𝒂𝑇𝒙 ≥ 𝑏𝑖, 𝑖 ∈ 𝑀1
𝒂𝑇𝒙 ≤ 𝑏𝑖, 𝑖 ∈ 𝑀2
𝒂𝑇𝒙 = 𝑏𝑖, 𝑖 ∈ 𝑀3
𝑥𝑗 ≥ 0, 𝑖 ∈ 𝑀4
𝑥𝑗 ≤ 0, 𝑖 ∈ 𝑀5

 (4.1)

Equation 4.1 is an example of an optimization problem with linear constraints. The

variables [x1, …, xM] are called decision variables. There are M total variables, each divided in

to five subsets M1 through M5. The vector a contains linear multipliers for the decision

variables. The function f(x) is said to be a cost or objective function. A vector x* that satisfies

all of the constraints and maximizes (or minimizes) the objective function is said to be a feasible

solution. It should be noted that the primal and dual examples in the previous chapter are said to

be convex as they are quadratic in nature.

Given the definition above, we would now like to formulate an optimization problem for

the SVR free parameters. We have already identified the three variables we would like to

optimize: , C and . Note this formulation assumes a radial basis kernel function as there is

only one parameter () associated with that function. In addition, we also need to solve for the

Lagrange multipliers as well as the bias term b to complete the SVR solution. Given a training

set y of real valued numbers, we would like to find an estimate f(x) for any real valued number x

using the SVR formulation. The SVR formulation is found by minimizing the duality gap 

defined in Equation 3.43. Equation 4.2 is the formulation of the optimization problem we are

trying to solve along with it constraints in Equation 4.3.

minimize ℎ(𝑓(𝒙), 𝒚) (4.2)

www.manaraa.com

38

subject to:

{

𝛾 ≤ 0.001

∑𝛼𝑖 = 0

𝑁

𝑖=1

, 𝑁 > 0

−𝐶 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ 𝑁
𝜀 > 0
𝐶 > 0
𝜎 > 0

(4.3)

The variable  is the duality gap defined in Equation 4.42. The Lagrange multipliers

defined in Chapter 3 are denoted as the vector  (one for each training set sample). The vector x

represents the N independent variables (time in this case) and the y vector represents the

corresponding N training (dependent) values respectively. The objective function h(.) is the

optimization objective function that needs to be defined. Its purpose is to evaluate the estimate

f(x) generated by the SVR process against the actual training values y. The formulation of h(.)

will be discussed further in Chapter 5.

4.2 Introduction to Particle Swarm Optimization

Equations 4.2 and 4.3 are the formulation of the objective function and its associated

constraints for finding the SVR user defined parameters for any arbitrary time series. The

optimization process selected for this research is Particle Swarm Optimization (PSO).

First developed by Kennedy and Eberhart ([4] through [8]) in 1995, PSO mimics the real

life process of a swarm of animals or insects searching for food. The goal for each individual of

the swarm, where each individual is termed a "particle", is to scavenge in a pre-defined search

region for the place that has the most food. Each particle has no prior knowledge of the amount

of food in any given location in the search region. As a particle travels through the search

region, each will remember the location in their search region where they have found the highest

density of food and the entire swarm will remember collectively where the highest density of

food was found in the areas that have been searched. As time passes, the particles move through

www.manaraa.com

39

the search region remembering where they have found the most food and where the swarm has

found the most food collectively. Each particle is driven by three motivational forces: 1) the

current direction they are traveling, 2) the location where the individual particle has found the

most food, and 3) the location where the group has collectively found the most food. These three

motivational forces are also modified by a “wandering” factor. This factor mimics the real world

behavior of animals or insects, meaning that particles do not exactly vector towards the exact

locations of their individual or collective findings. There is some randomness to their motion in

time. Eventually, the collection of particles, or “swarm”, will all eventually gravitate to some

location where the most food has been found.

This optimization process has been shown to outperform other optimization methods

such as genetic algorithms [10]. In addition, this technology in general has been shown to be

more efficient to implement as compared to genetic or evolutionary optimizers [10, 11]. The

ease of implementation is one of the highlighted attributes in using this specific algorithm. The

following PSO formulation is based on the previously stated references in this section along with

the work found in [9, 11, and 125].

4.3 Particle Swarm Optimization Terminology

PSO has a specific set of terminology and definitions that are somewhat unique to this

optimization process. This section outlines the terminology and definitions that will be used

throughout the dissertation.

The first definition is the particle. It represents the individual representation of a point in

the search space. It is defined by its location and direction of motion, both in position and

velocity. It also has a memory function, as each particle remembers the location where it found

www.manaraa.com

40

the most food and it also remembers the location where the entire swarm has found the most

food. The collection of the entire set of particles is called the swarm.

Position is defined as a particle’s location in space. Unlike a bird or insect real world

representation of position in a three dimensional space, a particle’s position can be N

dimensional. The particle’s velocity is also defined in the same N dimensional space and can be

limited by a user defined bound.

As mentioned with the particle definition is the memory function which is used to store

the location of the most food found by the individual particle and the swarm. The term used for

the location of the place where the particle found the most food is referred to as the particle’s

“personal best”, “particle best”, or more commonly pbest for short. The term used for the

location of the place where the entire swarm has found the most food is referred to as the “global

best”, or gbest for short.

As in the real world, animals and insects are usually limited to a certain region where

they can search for food. PSO has similar constraints for the particles. As the particles move

through space, eventually they will reach a boundary of their search region. The PSO algorithm

has different associated methods by which to manage these situations and is discussed further in

Section 4.5.

4.4 Particle Swarm Optimization Algorithm

Given the above description of PSO and its associated functions and processes, the goal

in this section is to define the PSO algorithm and tailor it to the SVR time series regression

problem and SVR free variable selection.

The first step in the PSO algorithm definition process is to define the solution space.

This is analogous to defining a physical region for a swarm of birds or insects to hunt for food.

www.manaraa.com

41

The individual particle parameter definitions and boundary limits that define the solution space

for this problem are given in Table 4.1.

Table 4.1: PSO Particle Definitions and Solution Space Boundaries

Particle Parameter Definition Parameter Bounds

Error Bound  The amount of error tolerated by the SVR

time series estimation process.

𝜀 ∈ ℝ
0 < 𝜀 ≤ 𝜀𝑚𝑎𝑥

Capacity Term C A user defined variable that balances the

flatness of the estimating function and the

amount of error beyond the error bound to

tolerate.

𝐶 ∈ ℝ
0 < 𝐶 ≤ 𝐶𝑚𝑎𝑥

Radial Basis Kernel

Function Parameter 

A user defined variable that will adjust the

projection of the sample time series into

feature space via the kernel function.

𝜎 ∈ ℝ
0 < 𝜎 ≤ 𝜎𝑚𝑎𝑥

Lagrange Multipliers

[1, …N]

The Lagrange multipliers are used to

weight the support vectors to produce an

estimate of a time series function. There

is one Lagrange multiplier for each data

point in the training set (total of N points).

𝛼𝑖 ∈ ℝ
−𝐶 ≤ 𝛼𝑖 ≤ 𝐶

Bias Term b The amount of offset between the

estimated function and the training set

values.

𝑏 ∈ ℝ
−𝑏𝑚𝑎𝑥 ≤ 𝑏 ≤ 𝑏𝑚𝑎𝑥

As can be seen, the solution space boundaries are given in Table 4.1 in the “Parameter

Bound” column. There are a total of N+4 parameters that define a particle’s solution space,

where N is the number of training samples for a given time series data set. The actual bound

limits that will be used in implementation will be discussed in Chapter 5.

The next step in the PSO algorithm development process is the definition of the PSO

fitness function. This was defined in Equation 4.2 as h(f(x),y), with the underlying assumption

that this function would produce a single real value that would give some measure of “goodness”

www.manaraa.com

42

between the estimated value f(x) and the actual training set y. Also recall the necessary process

to complete the SVR optimization shown in Chapter 3 that an optimization had to be completed

and a duality limit  needed to be achieved as seen in Equation 3.43. It now appears that there

are more than one set of objectives to be met for this particular problem. These types of

problems with multiple objectives using PSO are often referred to as Multiple Objective Particle

Swarm Optimization (MOPSO).

MOPSO is a candidate technique that can be considered for this application since more

than one "fitness" criteria is required. A survey of MOPSOs can be found in [126] along with

their implementations and applications. Reference [127] also details the use of MOPSOs and

qualitative performance results associated with applications with more than one fitness criteria.

Many of the MOPSO techniques reviewed and referenced above were considered for solving this

specific PSO/SVR problem. However, the solution of the SVR optimization problem is

dependent on , C, and , making the MOPSO techniques cited difficult to implement for this

type of problem. A further discussion of the PSO fitness function formulation will be presented

in Chapter 4 specifically tailored for the SVR optimization problem.

The next step in defining the PSO algorithm is to select the total number of particles to

use and initialize the position and velocity of the particles in solution space. Typically the total

number of particles is a function of the performance of the computing hardware available for

solving the specific problem. The initial position of any given particle for each dimension (N+4

in this case) is done by selecting a random point for each of the parameters (dimensions) detailed

in Table 4.1. The value of the initial positions parameters is a uniformly distributed random

number scaled by the boundary limit of each parameter. Equations 4.4 and 4.5 are the

representations of the particle’s position and velocity respectively as this notation will be used

www.manaraa.com

43

throughout the dissertation. Equations 4.6 through 4.10 show the initial position calculations for

each particle parameter, with each particle denoted by the index k.

particle position: 𝑝𝑘(𝜀,𝐶,𝜎,𝛼1…𝛼𝑁,𝑏)

(4.4)

particle velocity: 𝑣𝑘(𝜀,𝐶,𝜎,𝛼1…𝛼𝑁,𝑏)

(4.5)

𝑝𝑘,0(𝜀) = 𝜀𝑚𝑎𝑥 ∗ 𝑟𝑎𝑛𝑑

(4.6)

𝑝𝑘,0(𝐶) = 2 ∗ 𝐶𝑚𝑎𝑥 ∗ 𝑟𝑎𝑛𝑑 − 1

(4.7)

𝑝𝑘,0(𝜎) = 𝜎𝑚𝑎𝑥 ∗ 𝑟𝑎𝑛𝑑

(4.8)

𝑝𝑘,0(𝛼𝑖) = 2 ∗ 𝐶𝑚𝑎𝑥 ∗ 𝑟𝑎𝑛𝑑 − 1

(4.9)

𝑝𝑘,0(𝑏) = 2 ∗ 𝑏𝑚𝑎𝑥 ∗ 𝑟𝑎𝑛𝑑 − 1

(4.10)

The function “rand” is a uniform random number generator that produces real numbers

between zero and one inclusive. Each instance of “rand” produces an independent and

identically distributed (iid) random number. For convenience, we have shortened the particle

(and velocity) notation to identify only the dimension of the particle of interest. Also, we

introduced the zero subscript to indicate the number is the initial value. As seen in Equations 3.6

through 3.10, the initial particle location is within the search boundaries.

Using the same notation in Equations 4.4 through 4.10, a similar process is used to

initiate the particle velocities as shown in Equation 4.11.

𝑣𝑘,0(𝑧) = 𝛿𝑧𝑓𝑧(𝑝𝑘,0(𝑧))

(4.11)

The initial velocity calculations for each dimension uses the exact same random value

generation process shown in Equations 4.6 through 4.10, represented by the fz(.) function in 4.11.

The variable z represents any of the PSO parameters. The factor z is used to scale the value of

the random number generated for each parameter and will generally be less than one. More

www.manaraa.com

44

details regarding the selection of the bounds and velocity scale factor will be discussed in

Chapter 5.

At this point every particle has been given and initial position and velocity. Before the

particle can move through solution space, the pbest values for each particle need to be calculated.

This is done by evaluating the fitness function h(f(x),y) defined in Equation 4.2. The pbest value

scores are stored for each particle as well as the position where pbest was found. The highest

value of all the pbest values is then selected to be the gbest value as well as the location where

gbest was found. Again, location is defined as the value of the PSO parameters where the pbest

and gbest values were identified.

For notation, we would like to define Ns as the total number of time series samples in any

given time series training set and Np as the total number of particles in the PSO process. We

have now evaluated the fitness function for each particle and have selected the best result (gbest).

Equation 4.2 defined the fitness function objective as a minimization. In practice, there must be

some practical limit to be obtained in order to find a stopping point for the PSO process. If the

gbest value is found to less than some optimal number, the PSO process will end. If a limit is not

reached, then the particles must move in order to find a better fitness function value.

The motion of the particles through solution space is analogous to the physical motion of

birds or insects through physical space. The general equation of particle motion is defined in

Equation 4.12.

𝑝𝑘,𝑗+1 = 𝑝𝑘,𝑗 + Δ𝑡𝑣𝑘,𝑗

(4.12)

For convenience we have dropped the (z) notation with the understanding that each

particle’s (indexed by k) new position at step j+1 is dependent on the same particle parameter at

the previous step j plus the velocity term of the same parameter multiplied by a time factor t.

www.manaraa.com

45

This is the basic physical world representation of a constant velocity equation of motion. The

time factor t should not be confused with the time series x independent variable as stated in the

regression formulation in Chapter 3. PSO defines the factor t to be unity. It should be noted

that the notation j refers to each step in an iterative process, where each step is referred to as an

epoch.

Equation 4.12 is the equation of motion that is used to update the position of every

particle in the swarm. The particles will move through solution space until some minimum value

of the fitness function is found. For every epoch, the fitness function will be evaluated for every

particle and if a better value for the fitness function is found for any individual particle, its pbest

will be updated and stored. Also at every epoch, the best pbest score of all the particles will be

compared to the stored gbest value. If a better pbest value is found, the current gbest location

and value will be updated and stored.

After the evaluation of pbest and gbest at every epoch, the velocity of each individual

particle will need to be updated in order to continue moving through solution space. Equations

4.13 through 4.16 are the update functions for the particle velocity.

𝑣𝑘,𝑗+1 = 𝑚1𝑔1 +𝑚2𝑔2+𝑚3𝑔3

(4.13)

𝑔1 = 𝑣𝑘,𝑗

(4.14)

𝑔2 = 𝑟𝑎𝑛𝑑 ∗ (𝑝𝑏𝑒𝑠𝑡𝑘,𝑗 − 𝑝𝑘,𝑗)

(4.15)

𝑔3 = 𝑟𝑎𝑛𝑑 ∗ (𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑝𝑘,𝑗)

(4.16)

𝑚1,𝑚2, 𝑚3 ∈ ℝ,𝑚1,𝑚2, 𝑚3 > 0

(4.17)

A particles’ velocity defined in Equation 4.13 for any given epoch is the weighted sum of

three “forces” acting on the particle. The first term, expressed in Equation 4.14, is referred to as

the inertial term with its associated inertial weight m1. This term forces the particle to go in the

www.manaraa.com

46

same direction it was travelling in the previous epoch, as related to inertia in the physical sense.

The second term, expressed in Equation 4.15, is referred to as the cognitive term with its

associated cognitive weight m2. This term forces the particle in the direction where the particle’s

pbest location was found, as related to a cognitive decision by an individual bird or insect. The

last term, expressed in Equation 4.16, is referred to as the social term with its associated social

weight m3. This term forces the particle in the direction where the swarm’s gbest location was

found, as related to the social swarm locating the best location in the searched area.

The three weights m1, m2, and m3 are identified in Equation 4.17 and are generally user

defined. It should be noted that there is no single heuristic to determine these three values,

although the referenced literature makes some suggestions regarding recommended values. It is

also clear that the ratio of these weights relative to each other will change the behavior of the

particle as it moves through space.

One real world analogy associated with setting the three weights could be expressed as a

definition of a particles “personality”. A high inertial weight along with lower cognitive and

social weights would tend to make the particle “stubborn” and not tend to be influenced by its

own experience or the experience of the swarm. Another example would be a high cognitive

weight with lower inertial and social weights, making the particle appear to be “selfish” or

“independent” in the sense it is only worried about the maximum fitness function location for

itself. The last analogy would be one where the social weight is higher than both the inertial and

cognitive weights, making the particle tend to be more “social” or “dependent” as it will tend to

be more influenced by all the other particles and tend to the location where the swarm has found

the best fitness function. The study of determining an optimal set of weights along with their

classifications is a subject for further research.

www.manaraa.com

47

Figure 4.1 is a general view of one particle moving through a two dimensional space.

Figure 4.1: Particle Motion Through Solution Space

As seen in the two dimensional example in Figure 4.1, the particle (shown as the blue

point) is being moved by three forces: 1) the inertial force (black vector), 2) cognitive force

(green vector), and 3) the social force (red vector). The particle’s position at the next epoch will

result from the vector sum of those three forces for every parameter (NS+4 dimensions in this

PSO formulation).

Another important aspect of the PSO algorithm formulation is the use of the “rand”

functions in the cognitive and social “force” Equations in 4.15 and 4.16. Again, the rand

function is a uniformly distributed iid function that produces a random value [0, 1]. The rand

function produces two separate values for each term and two new random numbers for every

epoch. The purpose of this factor is to mimic the real world “wandering” behavior of birds and

insects while they are attempting to find the location with the best fitness function. This adds an

additional weighting factor to those terms and forces the particle to move in a random fashion

towards its pbest and the swarm’s gbest value.

www.manaraa.com

48

Figure 4.2 illustrates the general PSO algorithm process.

Figure 4.2: General PSO Optimization Process

The last part of the optimization described in the next section deals with the case when a

particle travels outside the solution space boundary for any given PSO parameter.

4.5 PSO Boundary Conditions

There are times when a particle’s trajectory can force the particle outside any given

boundary of the Ns+4 PSO parameters (the solution space). There are several different methods

available to handle these conditions for PSO.

The first method for handling a boundary condition violation is called an “absorbing

wall”. In this case when any given dimension of the particle exceeds the upper or lower bound,

www.manaraa.com

49

the velocity related to that dimension is set to zero. This technique mimics the particle traveling

along the bound of that parameter, or being “absorbed” by the wall. In this case, the only forces

acting on future movements of the particle are due only to the cognitive and social forces, which

should eventually pull the particle back to the defined search space. There may be an issue, in

general, in trying to evaluate the fitness function for parameters outside the solution space.

Using this technique will depend on the application and more specifically the fitness function

calculation’s tolerance to parameter values outside their defined bounds. If necessary, the

parameter that exceeds the boundary value can be set to the boundary value, making for a more

representative “absorption” of the boundary wall. It should be noted that this technique

modification was not explicitly mentioned in the researched literature.

The next technique considered for PSO boundary violation is called “reflecting walls”.

When a particle exceeds its upper or lower boundary, the sign of the velocity for that parameter

is reversed. This mimics the physical action of a ball bouncing off a wall. In this case, the

particle’s parameter that was out of bounds should return inside the boundary limit.

The last technique considered is called “invisible” walls. In this case when a particle’s

parameter exceeds the boundary limit, the velocity (of any parameter) is unchanged and the

particle is allowed to pass through the boundary. The key aspect of this technique is the fact that

the fitness function is not evaluated when any of the PSO parameters exceed their defined

bounds. This will save on computation resources. Since there is no fitness evaluation, pbest will

not be updated for the particle. Similar to the absorbing walls technique, the particle is expected

to be pulled back into the solution space by the cognitive and social forces.

www.manaraa.com

50

Table 4.2 illustrates the advantages and challenges associated with each of the three

boundary condition techniques and Figure 3.3 illustrates the particle behavior when the

parameter boundaries are exceeded.

Table 4.2: PSO Boundary Condition Advantages and Challenges

Boundary

Condition

Technique

Advantages

Challenges

Absorbing Wall  Particle will not (necessarily) leave

the solution space, making each

evaluated pbest, gbest feasible.

 Condition evaluation for changing

velocity and technique

implementation are simple.

 Evaluation of fitness function while particle

parameter is outside the boundary may not be

possible.

 Time (number of epochs) required for particle

to reenter the solution space may be

considerable depending on the weighting

factors m1,2,3. Also need to consider the case

when (if) gbest is selected outside the solution

space.

Reflecting Wall  Particle will (should) only leave the

solution space for one epoch

 Condition evaluation and change of

velocity sign simple to implement

and evaluate.

 Evaluation of fitness function while particle

parameter is outside the boundary for at least

one epoch may not be possible.

 When the particle is outside the boundary, the

total number of swarm particles is decreased

and the number of potential contributors to the

gbest estimation is reduced (efficiency

penalty).

 Time (number of epochs) required for particle

to reenter the solution space may be

considerable depending on the weighting

factors m1,2,3 and if a true “absorption” of that

parameter to the boundary is not implemented.

Also need to consider the case when (if) gbest

is selected outside the solution space.

Invisible Wall  There is only one test to evaluate if

the particle is outside the boundary;

no necessary updates (calculations)

to velocity or position.

 Increase in computational

efficiency as the fitness function

will not be evaluated unless all the

particle’s parameters are within

their bounds.

 Time (number of epochs) required for particle

to reenter the solution space may be

considerable depending on the weighting

factors m1,2,3.

 When the particle is outside the boundary, the

total number of swarm particles is decreased

and the number of potential contributors to the

gbest estimation is reduced (efficiency

penalty).

www.manaraa.com

51

Figure 4.3: PSO Boundary Condition Illustration

As can be seen in the two dimensional example in Figure 4.3, the red points illustrate the

absorbing wall technique as the motion of the particle is being absorbed into the lower bound of

parameter B. The green points illustrate the reflecting wall technique as the boundary of

parameter A is reached the velocity of the particle in that dimension is reversed. Finally the blue

points illustrate the invisible wall technique where the particle is allowed to violate the lower

bound of parameter B but once outside this boundary, the fitness function is not update and

consequently the pbest (and possibly gbest) values are not updated.

4.6 Parameter Selection

The PSO algorithm described in the previous section requires the definition of three

specific parameters: 1) inertial weight, m1, 2) cognitive weight, m2, and 3) social weight, m3.

These are user defined parameters and may be application dependent as noted in researched

literature.

For the purposes of this study, the initial m1 weight is set to 0.75 (approximate value of

recommended settings in literature). However, in adapting the other two weights m2 and m3, it

www.manaraa.com

52

was discovered for the CMPSO implementation that the recommended values above 1.0 resulted

in the PSO algorithm not converging for the examples studied. The values for m2 and m3 are set

to 0.75 and 0.25 respectively for the CMPSO implementation described in Chapter 5 based on

similar convergence issues and observations.

The process of selecting the three weights is further complicated by the setting of the

initial particle velocity. If the weights are too large, the second epoch of the PSO algorithm

iteration (the first movement of the particles) could have the particles fly outside many if not all

of the PSO parameter boundaries. This may require more epochs for the velocities to “settle” to

reasonable values that maintain the particles’ position in the solution space. Another factor in

setting the weights is the computational power and efficiency of the computing platform. If a

suitable computing environment is available, the sensitivity of these settings becomes less

important as long as at some point the PSO algorithm converges. Again, it is user and

application specific.

In summary, an “optimal” set of PSO parameters would require a completely different

optimization formulation and could potentially be biased towards any one application. It is clear

that this is a further research topic.

www.manaraa.com

53

CHAPTER 5: CONSTRAINED MOTION PARTICLE SWARM OPTIMIZATION

5.1 Motivation and Objectives

We have now formulated the SVR solution for time series estimation and regression

outlined in Chapter 3, noting that there are Ns+4 SVR specific parameters to optimize and three

of those parameters are user defined with no given solution heuristic. In Chapter 4 we have

suggested an optimization algorithm, PSO, to be used to find all these parameters.

There are many challenges associated with using PSO to optimize SVR parameters. First

is defining the PSO fitness function in Equation 4.2 along with the requirement to minimize the

duality gap  defined in Equation 3.43 for SVR optimization. This would suggest a MOPSO

based approached suggested in Section 4.4.

Alternative PSO approaches not based on multiple objectives have been proposed for

SVR free parameter (, C, and ) estimation. Hong [128] proposed the use of Chaotic PSO in

use with SVR for electrical load forecasting. The technique uses a parallel approach in applying

PSO to find the SVR free parameters, but the technique still requires an SVR solution algorithm

for the QP problem. Guo et al. [129] uses PSO for finding the free parameters for a Least

Squares Support Vector Machine (LS-SVM) application using medical related data for

benchmarking (note that this application was specifically for hyper-parameter selection for SVM

classification, not SVR based regression).

Other PSO related applications involving SVR and linear constraint problems have been

studied. Yuan et al. [130] introduced a modified PSO algorithm for SVM training based on

www.manaraa.com

54

linearly-constrained optimization using PSO and techniques proposed by Paquest and

Engelbrecht [125, 131]. The method presented by Yuan, the "Modified Linear PSO - MLPSO",

initializes the Lagrange multipliers randomly, but relies on re-initialization of the Lagrange

multipliers should they go beyond the capacity value boundary C. The focus of the research in

these citations is a PSO applied process for solving linearly constrained optimization problems.

None of the cited research offers a solution that will find a candidate solution for the PSO

fitness function while optimizing the SVR objective function simultaneously. Note the SVR

objective function solution also requires certain constraints to be met as shown in Equation 3.41.

In addition, the cited references are generally tuned to a given application, which in general can

be a limitation as different applications may require different implementations and setups of any

given candidate solution.

We would now like to formulate a general solution for any given time series prediction

and regression problem that will meet the functional objectives outlined in Table 5.1. Meeting

all of the stated objectives in Table 5.1 would be advantageous as a general time series

regression and estimation framework could be employed for any application. However, the

development of such an optimizer will require some modifications to the given SVR and PSO

formulations.

5.2 Support Vector Regression Dual Objective Function Reformulation

The first step in meeting the objectives stated in Table 5.1 is to reformulate the SVR dual

optimization problem presented in Chapter 3, Equations 3.40 and 3.41 which are restated in

Equations 5.1 and 5.2, respectively. Additionally, the associated Lagrange multiplier initial

limits shown in Equation 4.9 are restated in Equation 5.3.

maximize ∑𝛼𝑖𝑦𝑖

𝑁𝑆

𝑖=1

− 𝜀∑|𝛼𝑖| −
1

2

𝑁𝑆

𝑖=1

∑∑𝛼𝑖𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗)

𝑁𝑆

𝑗=1

𝑁𝑆

𝑖=1

 (5.1)

www.manaraa.com

55

subject to { ∑𝛼𝑖 = 0

𝑁𝑆

𝑖=1

−𝐶 ≤ 𝛼𝑖 ≤ 𝐶

(5.2)

𝑝𝑘,0(𝛼𝑖) = 2 ∗ 𝐶𝑚𝑎𝑥 ∗ 𝑟𝑎𝑛𝑑 − 1 (5.3)

Table 5.1: General Time Series Regression and Estimation Functional Objectives

Objectives Details Notes

SVR Based

Regression and

Estimation

The basis of the general

formulation will include SVR

as the regression and

estimation engine.

SVR requires, at a minimum, an

optimization routine that will solve for

the Lagrange multipliers and bias value.

In addition, SVR free variables will have

to be selected.

PSO Based

Optimization

PSO will be used to, at a

minimum, find an optimal set

of SVR free variables.

PSO requires the definition of a fitness

function as well as a method to handle

parameter boundary violations.

Limited QP Use Some form of QP solver will

be necessary to find the

Lagrange multipliers and bias

term b for the SVR

formulation.

A modified version of SMO can be used

to solve the SVR problem. However, the

use of this solver will be computationally

expensive if every Lagrange multiplier

and bias term needs to be calculated for

every particle over every epoch.

Radial Basis

Kernel Function

Use

Selected based on general use

in many applications.

Radial Basis Kernel functions only

require one parameter to be tuned

(typically user defined).

Adaptability Any given two dimensional

time series can be estimated

regardless of scaling.

This will require a scaling of the sample

data and a general solver to operate in the

scaled space.

We now have a clear problem in bounding the Lagrange multiplier limits as they are

dependent on the regularization parameter C. This means the candidate Lagrange multipliers

solution space could contract or expand as a function of C for every particle over every epoch,

which would be infeasible to implement.

www.manaraa.com

56

The PSO framework described in Chapter 4 further requires that each PSO parameter

have fixed boundary values. This can be achieved by scaling the dual objective function by the

constant C (noting that C > 0) as well as scaling the constraint equations. The reformulation of

the SVR dual objective function, its associated constraints, and particle initialization for the

parameter are given in Equations 5.4 through 5.6, respectively.

maximize 𝐶 (∑𝛼𝑖𝑦𝑖

𝑁𝑆

𝑖=1

− 𝜀∑|𝛼𝑖| −
𝐶

2

𝑁𝑆

𝑖=1

∑∑𝛼𝑖𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗)

𝑁𝑆

𝑗=1

𝑁𝑆

𝑖=1

) (5.4)

subject to { ∑𝛼𝑖 = 0

𝑁𝑆

𝑖=1

−1 ≤ 𝛼𝑖 ≤ 1

(5.5)

𝑝𝑘,0(𝛼𝑖) = 2 ∗ 𝑟𝑎𝑛𝑑 − 1 (5.6)

Although the reformulated dual objective function in Equation 5.4 has an outer scale

factor C that would not affect a maximum value solution, it will be necessary to use in finding

the duality gap  defined in Equation 3.43, thus it is kept in Equation 5.4 for completeness. Also

noted is the second constraint in Equation 5.5. The Lagrange multipliers are now bounded by

fixed values of +/- 1. Subsequently, the initialization of the Lagrange multipliers shown in

Equation 5.6 is no longer dependent on any other PSO parameter. All of the PSO parameters are

now independent based on the SVR dual objective function reformulation.

Based on this reformulation, the SVR estimation function in Equation 3.42 is now

restated in Equation 5.7 with the appropriate scale factor.

𝑓(𝑥) = 𝐶∑𝛼𝑖

𝑁

𝑖=1

𝐾(𝑥, 𝑥𝑖) + 𝑏 (5.7)

This formulation allows the use of PSO to solve for the required parameters.

www.manaraa.com

57

5.3 Particle Initialization and Constrained Motion

We now have a way to set up the PSO parameter bounds to fixed values due to the

reformulation of the dual objective function as shown in Equation 5.4. The initialization

equations given in Equations 4.6 through 4.10, with the substitution of Equation 5.6 for Equation

4.9, now define the initial positions and velocities for each of the particles. However, there is

another constraint that must be held in Equation 5.5 which states the sum of the Lagrange

multipliers must equal zero in order to have a feasible solution for the SVR dual objective

function. The Lagrange multiplier initialization given in Equation 5.6 does not account for this

constraint.

One option is to leave the Lagrange multiplier initialization as is and define a bound for

the sum of the Lagrange multipliers as shown in Equation 5.8.

|∑𝛼𝑖

𝑁𝑆

𝑖=1

| ≤ 𝑟

(5.8)

The problem with this formulation is that there is the introduction of yet another

optimization parameter r and the actual estimation of the time series may not be optimal

depending on this (possibly user defined) value. One would like to minimize the number of

parameters to optimize as well as maintain the PSO formulation stated in Chapter 4 without

adding additional computational complexity.

One way to solve this issue is to initialize the particles’ position and velocity for the

Lagrange multiplier parameters such that the Lagrange multiplier zero summation constraint is

satisfied. This can be done by initializing NS-1 particles’ Lagrange multiplier positions and

velocities as stated in Equation 5.6. The identification of the NS-1 Lagrange multipliers to be set

is randomly selected as well. The remaining Lagrange multiplier is set to the negative of the

www.manaraa.com

58

summation of the NS-1 Lagrange multipliers. An iterative process can be set up at initialization

such that if the sum of the last Lagrange multiplier is greater than the unity bound (the second

bound constraint in Equation 5.5), another set of random candidate Lagrange multipliers can be

selected until the bound is met.

Figure 5.1 illustrates the PSO particle Lagrange multiplier position and velocity

initialization process.

Figure 5.1: Particle Lagrange Multiplier Initialization Process

It should be noted that the notation in Figure 5.1 does not differentiate particle position or

velocity as the initialization process is generalized for both. Also note that each randomly

developed Lagrange multiplier is relocated to a random index value such that the last index is not

www.manaraa.com

59

necessarily the location for the negative sum of the Ns-1 Lagrange multipliers. The setting of the

initial Lagrange multipliers for each particle Lagrange multiplier position and velocity now

satisfies the summation constraint in Equation 5.5. By definition, each particle is now a feasible

solution to the SVR dual objective function defined in Equation 5.4 with the associated

constraints shown in Equation 5.5.

As the PSO process iterates, each particle moves through solution space. We now restate

the particles’ equation of motion in Equation 4.12 in Equation 5.9 for any given dimension as

well as the particle velocity update in Equation 5.10.

𝑝𝑘,𝑗+1 = 𝑝𝑘,𝑗 + [

𝑚1

𝑚2

𝑚3

]

𝑇

[

𝑣𝑘,𝑗

𝑟𝑎𝑛𝑑 ∗ (𝑝𝑏𝑒𝑠𝑡𝑘,𝑗 − 𝑝𝑘,𝑗)

𝑟𝑎𝑛𝑑 ∗ (𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑝𝑘,𝑗)

]

(5.9)

𝑣𝑘,𝑗 = [

𝑚1

𝑚2

𝑚3

]

𝑇

[

𝑣𝑘,𝑗−1

𝑟𝑎𝑛𝑑 ∗ (𝑝𝑏𝑒𝑠𝑡𝑘,𝑗−1 − 𝑝𝑘,𝑗−1)

𝑟𝑎𝑛𝑑 ∗ (𝑔𝑏𝑒𝑠𝑡𝑗−1 − 𝑝𝑘,𝑗−1)

]

(5.10)

Equation 5.9 states that for any particle k, its position in any dimension at epoch j+1 is

computed as the sum of where it was (in any dimension) at epoch j plus the weighted sum of its

velocity terms at epoch j. The cognitive and social velocity terms, shown as the difference

between and the particles’ pbest location and swarm’s gbest location at epoch j and where the

particle was at epoch j, are modified by a uniformly distributed iid random scale factor. Note the

m vector is defined as m = [0.75 0.75 0.25]
T
 as discussed in Chapter 4.

Based on the initialization process shown in Figure 5.1 and the particle position and

velocity update Equations 5.9 and 5.10, we now conclude the sum of the Lagrange multipliers in

both position and velocity for any particle are zero for any epoch. This is achieved by

initializing both the Lagrange multiplier position and velocity to zero simultaneously. Every

www.manaraa.com

60

update to position is now a weighted sum of position and velocity terms that sum to zero, forcing

the sum of the Lagrange multipliers to be zero at every epoch.

This concept constrains the motion of the particles’ Lagrange multipliers to always sum

to zero which means the zero summation constraint in Equation 5.5 is always met. Now every

particle at every epoch is a feasible, but not necessarily optimal, candidate solution for the SVR

optimization problem because both constraints in Equation 5.5 are met simultaneously. The

constraining of the motion of the particles effectively reduces the solution space. This is the

essential part of the PSO formulation and this formulation is called Constrained Motion Particle

Swarm Optimization or CMPSO for short.

5.4 PSO Boundary Condition Selection

As described in Section 4.5, the PSO algorithm needs to handle situations where the

particle might fly outside its boundaries for any given dimension. The selection of the boundary

method for any of the parameters other than the Lagrange multipliers should not be a factor, but

to ensure a feasible SVR solution for every particle at every epoch, the constraint conditions

must hold, even during boundary condition violations.

Since the absorbing walls technique formulation will nullify the velocity for any one

Lagrange multiplier, and in some cases may force a given Lagrange multiplier to be set to the

boundary value, the zero summation constraint in Equation 5.5 cannot be guaranteed to be met.

It is clear that this method will not work for the CMPSO framework as the goal is to have every

particle at every epoch be a feasible SVR candidate.

The reflecting wall technique manipulates the velocity for any given Lagrange multiplier

that falls outside the solution region by reversing the sign of the velocity for the parameter that

has violated a bound. The use of this technique will also violate the summation constraint in

www.manaraa.com

61

Equation 5.5 and will not be suitable as a PSO boundary condition violation remedy for the same

reasons as stated for the absorbing walls technique.

The remaining technique, invisible walls, has unique features which adapt well to the

requirement of having every particle at every epoch represent a feasibility solution. Recall for

this technique that the particle is allowed to travel outside any given boundary without position

or velocity adjustment. This means that the summation constraint in Equation 5.5 is always met

regardless if the particle is in the Lagrange solution space boundaries or not. However, if any of

the Lagrange multipliers violate the +/- 1 boundary, the second constraint in Equation 5.5 will be

violated. It turns out this situation is manageable because pbest for a particle that has any of the

PSO parameters falling outside their respective boundaries will not be calculated, and

subsequently gbest will not be affected. An infeasible solution when a Lagrange multiplier is

outside its bound for any given particle will never be considered as a candidate solution to the

problem. The penalty paid for using this technique is the particle will not be able to contribute to

a solution when its Lagrange multipliers (or other parameters) fall outside a boundary. However,

the loss of computational efficiency can be offset by the fact that the fitness function will not

need to be evaluated for a particle outside a boundary.

5.5 PSO Fitness Function, Iteration Bounds and Stagnation

As stated in Chapter 4, defining the fitness function for any given optimization problem

can be the most difficult task in the formulation. A notional fitness function was given in

Equation 4.2, which suggested that the “goodness” of the CMPSO process would be dependent

on some type of comparison between a candidate training set and the CMPSO estimate.

Different techniques were considered, including MOPSO, but as it turns out, the SVR

formulation itself is sufficient as the CMPSO fitness function.

www.manaraa.com

62

The SVR time series regression and estimation process is the underlying regression

engine in CMPSO, along with the optimization of the SVR user defined parameters. There is no

further need to develop a more complicated fitness function to evaluate the “goodness” of a fit to

the training data as it is embedded in the SVR formulation itself. Therefore the duality gap value

formulation in Equation 3.43 is used as the fitness function for the PSO optimization problem.

Equation 4.2 is now restated below as Equation 5.11 with its associated parameter constraints in

Equation 5.12.

CMPSO Fitness Function: Minimize 𝛾 (5.11)

Subject to: {

0 < 𝜀 ≤ 𝜀𝑚𝑎𝑥
0 < 𝐶 ≤ 𝐶𝑚𝑎𝑥
0 < 𝜎 ≤ 𝜎𝑚𝑎𝑥
−1 ≤ 𝛼𝑖 ≤ 1

 (5.12)

The formulation above assumes the SVR estimation function found in Equation 5.7,

which includes the scale factor C with the Lagrange multiplier limits set to +/- 1. Note i is

defined as the index to the NS training samples [1,…,NS].

The use of the duality gap for the PSO fitness function is an important feature of the

CMPSO formulation. The gap value verifies if the SVR process is complete, which will

essentially eliminate the use of a QP algorithm that normally would be required to complete an

SVR solution for every particle over every epoch. This approach ensures a significant savings in

computational time as will be shown in Chapter 6.

It is interesting to note that the bias parameter b in Equation 5.7 no longer appears in the

formulation or in the constraints Equation 5.12 as it is not a necessary part of the dual objective

function calculation, but will be necessary for the primal objective function calculation,

specifically in the estimation of the slack variables. As it turns out, b can be calculated directly

www.manaraa.com

63

and will not be necessary to include in the optimization parameter list. The calculation of b is

discussed in the next section.

The PSO algorithm is an iterative process, as it tries to find a set of parameters that will

satisfy the fitness function in Equation 5.11. In the cases observed in this research, it was found

that a two stage approach for achieving a minimal fitness value for  in Equation 5.11 can be

obtained in a timely manner with limited computing resources. The first stage of CMPSO moves

the particles through solution space as described above, but ends at a slightly higher  value of

0.025. The diverse empirical data results shown in Chapter 5 indicates this is a fitness level

bound sufficient enough to hold the , C, and  PSO parameters at their current value. The

second phase simply uses a QP algorithm to complete the Lagrange multiplier calculation to a

fitness function value of 0.001 as required in the formulation. The QP algorithm used in

CMPSO is a modified version of the SMO algorithm detailed in [21, 50]. In the (unlikely) event

that the CMPSO iterative process never reaches the first stage fitness function threshold, the

CMPSO processing will halt after a maximum number of iterations has passed.

As the PSO algorithm progresses, the particles will eventually tend towards the gbest

value. It is possible that all of the particles may converge to a location that might not meet the

fitness function criteria. It can be seen that the velocity update will tend to approach zero as the

difference in its location relative to pbest and gbest will approach zero. When this situation

happens, the swarm is said to “stagnate”. This is the case where the swarm has settled on a

“local minimum”, which is defined as a place where the swarm thinks it has found a gbest

location which approaches the fitness function criteria, but actually has not met the threshold.

To handle these situations, it is necessary to reinitialize a subset of the particles. CMPSO will

www.manaraa.com

64

reinitialize almost all of the particles (98%) every 50 epochs to ensure a stagnation condition

does not persist.

It is important to note that the use of a two stage process including a QP algorithm and

the occurrence of stagnation conditions are dependent on the computing platform’s

computational performance limits, both in memory and speed. If enough computing power is

available, many more particles could be used in the swarm to find the optimal solution,

decreasing the likelihood that stagnation will occur. Results shown in Chapter 6 indicate that

these method work for the given applications and the available computational resources.

5.6 Time Series Data Scaling

As noted in Table 5.1, one of CMPSO’s required attributes is its ability to adapt to

different time series applications. This can be difficult as the dimensions of any given time

series data, both in the independent and dependent variable, can vary application to application

by a large amount. To manage this requirement, a data scaling factor is introduced to the

CMPSO process.

Prior to the PSO optimization process, the input training time series data is scaled to fit a

standard (x, y) frame depending on the application. If the goal is to use CMPSO to interpolate a

function, the independent data values will be scaled to fit within a [0.0, 1.0] window. If the

objective is to use CMPSO to extrapolate data, the independent data values will be scaled to fit

within a [0.0, xmax] window. The value xmax is at least 0.9 in the cases presented in this research.

In other cases where the required extrapolated value is very far from the last training point, the

xmax value may need to be rescaled.

The dependent variable, regardless of an interpolation or extrapolation application, is

scaled to [-1.0, 1.0]. The scaled data is then input to CMPSO and processed until the PSO fitness

function is reached as described above. The final result is then scaled back to the original

www.manaraa.com

65

dimensions of the problem at which time the time series estimate can be compared to the original

data set for performance evaluation.

The other method that could be used is to set the PSO parameter limits to very large

numbers that would encompass many possible applications. This would be inefficient as the

solution space would be too large and the likelihood that a particle will converge to an optimal

solution in a reasonable amount of time would be reduced. This scaling function is the means by

which a general time series regression or estimation process can be made regardless of

application for CMPSO for the available computational resources.

5.7 CMPSO Framework Summary and Parameter Settings

There are many CMPSO formulation aspects detailed in this chapter that make the

combination of SVR and PSO work for a wide range of time series prediction and regression

problems. This section summarizes the CMPSO framework and illustrates the details of the

CMPSO algorithm and its specific parameter settings.

Figure 5.2 shows the general CMPSO process framework. Starting with Figure 5.3, each

of the functional areas of the CMPSO framework is defined in detail. First is the input time

series scaling. Figure 5.4 illustrates particle initialization process. Figure 5.5 illustrates the

fitness function evaluation. Figure 5.6 shows the particle motion update function and Figure 5.7

shows the particle parameter re-initialization function. Finally Figure 5.8 shows the last

optimization steps and evaluation process.

www.manaraa.com

66

Figure 5.2: CMPSO Process Framework

Figure 5.3: CMPSO Input Data Scaling

www.manaraa.com

67

Figure 5.4: CMPSO Particle Parameter Initialization

Figure 5.5: CMPSO Particle Fitness Evaluation

www.manaraa.com

68

Figure 5.6: CMPSO Particle Motion Update

Figure 5.7: CMPSO Particle Re-Initialization

www.manaraa.com

69

Figure 5.8: CMPSO Final Processing

Figures 5.3 through 5.8 represent the entire CMPSO algorithm. There are many

parameters and limits associated with the actual implementation of CMPSO. Table 5.2 details

these values.

We have now completely defined the CMPSO algorithm, including functional processes

as well as all the relevant parameters associated with the algorithm. The following chapter will

illustrate CMPSO’s ability to estimate arbitrary time series functions.

www.manaraa.com

70

Table 5.2: CMPSO Parameter List

CMPSO

Parameter

Details Notes

Number of

Particles

CMPSO uses 500 particles

regardless of application.

Selected based on computational

hardware used for this research (see

Chapter 5).

Particle

Velocity Limit

During particle velocity and

update cycles, the velocity is

limited to 10% of the range of

bounds for any given

parameter.

This limit essentially slows the particles

motion through the solution space and

helps keep a significant number of

particles in the solution space boundaries.

 Max and Min

Values

0.10 and 0.02, respectively. Determined empirically based on data

examples shown in Chapter 5.

C Max and Min

Values

2.0 and 0.001, respectively. Determined empirically based on data

examples shown in Chapter 5.

 Max and Min

Values

1.0e-3 and 1.0e-5,

respectively.

Determined empirically based on data

examples shown in Chapter 5.

Particle Reset

Limits

98% of the lowest scoring

pbest particles are reset every

50 epochs.

This prevents swarm stagnation.

Fitness Function

Thresholds

0.25 and 0.001. The higher value is used to halt the PSO

search process for , C, and . The

second value is used to complete one QP

pass on the gbest parameters to complete

the CMPSO process.

Epoch Limit Maximum number of epochs

to execute is 20000.

In case the PSO fitness function does not

reach a feasible solution, the CMPSO

process will halt after the epoch limit is

reached.

www.manaraa.com

71

CHAPTER 6: PERFORMANCE METRICS AND RESULTS

6.1 Statistical Performance Metrics

We have now defined CMPSO and have shown the implementation details for using SVR

as the time series regression and estimation engine along with PSO to assist in optimizing user

defined variables as well as the standard SVR variables. To illustrate CMPSO performance

against any given time series regression or estimation problem, a set of time series statistical

comparison metrics needs to be defined.

Recall from Section 1.1 the definition of “goodness” for a time series estimate. First, it

must be consistent, meaning the expected value of the estimate as compared to a reference time

series must approach zero. Equation 6.1 illustrates the bias estimation equation.

Error Mean:
1

𝑁𝑆
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

𝑁𝑆

𝑖=1

 (6.1)

 where NS is our standard definition of the number of time series samples, yi is a sample of the

time series we are trying to estimate, sometimes referred to as reference or “truth” data, and f(xi)

is the generated estimate.

Equation 6.1 is referred to as the error mean. Related to this metric is the mean absolute

error defined in Equation 6.2.

Mean Absolute Error:
1

𝑁𝑆
∑|𝑦𝑖 − 𝑓(𝑥𝑖)|

𝑁𝑆

𝑖=1

 (6.2)

www.manaraa.com

72

Both Equations 6.1 and 6.2 are standard bias measures that are used to evaluate a

goodness of fit.

The second measure of estimation performance is the consistency of the estimate.

Consistency is defined as the variance of the estimate relative to the closeness of fit to the

example data and is defined in Equation 6.3.

Estimation Consistency: lim
𝑁𝑆→∞

𝐸[(𝒚 − 𝑓(𝒙))2] = 0 (6.3)

where NS is the number of samples in the data set and the E[.] is the expected value operator

represented in Equation 6.6.

The most common measure of consistency is the Normalized Mean Square Error

(NMSE) as defined in Equations 6.4, 6.5 and 6.6.

NMSE:
1

𝜎2𝑁𝑆
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2

𝑁𝑆

𝑖=1

(6.4)

 𝜎2 =
1

𝑁𝑆 − 1
∑(𝑦𝑖 − 𝐸[𝒚])

2

𝑁𝑆

𝑖=1

(6.5)

 𝐸[𝒚] =
1

𝑁𝑆
∑𝑦𝑖

𝑁𝑆

𝑖=1

(6.6)

Equation 6.5 is often referred to as the sample standard deviation of a time series. Note

the  value in this equation is not related to the  value in the SVR formulation.

Figure 6.1 is an illustration of the difference between biased/unbiased and

consistent/inconsistent examples of data sets. Consider a case where a single two dimensional

data point is trying to be estimated. The blue X in Figure 6.1 illustrates the target. The red dots

mark the given estimation process attempts to target the location X. The four separate panels in

the figure represent the four qualitative possibilities of bias and consistency measures.

www.manaraa.com

73

Figure 6.1: Illustration of Estimator Bias and Consistency

It is clear from Figure 6.1 that a good estimator will hit close to the target repeatedly,

making it unbiased and consistent.

For the data series examined in this chapter, there are other measures of time series

prediction effectiveness that need to be defined. First is the Mean Square Error (MSE) and

subsequently the Root Mean Square Error (RMSE) defined in Equations 6.7 and 6.8,

respectively.

MSE:
1

𝑁𝑆
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2

𝑁𝑆

𝑖=1

(6.7)

 RMSE: √
1

𝑁𝑆
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2

𝑁𝑆

𝑖=1

(6.8)

www.manaraa.com

74

As seen in these two equations, both of these measures are focused on the consistency of

the estimating function.

The next two measures are the Maximum Average Percent Error (MAPE) and Maximum

Error (MAXE) shown in Equations 6.9 and 6.10, respectively.

MAPE:
100

𝑁𝑆
∑|

𝑦𝑖 − 𝑓(𝑥𝑖)

𝑦𝑖
|

𝑁𝑆

𝑖=1

(6.9)

 MAXE: 𝑚𝑎𝑥(|𝑦𝑖 − 𝑓(𝑥𝑖)|)𝑖=1,…,𝑁𝑆 (6.10)

These measures of effectiveness give an indication of bias. It should be noted that the

MAPE value is scaled to 100 %.

We have now defined a set of measures of effectiveness for time series regression and

estimation. A good estimator will tend to have close to zero values for all of the above

represented measures of effectiveness.

6.2 Computing Environment

To evaluate CMPSO against selected time series applications, a computing environment

was set up to implement CMPSO as well as measure the performance per the metrics outlined in

Section 6.1. For this research, a single Windows based Personal Computer (PC) was used as the

development and test platform. As noted earlier, computational performance is a function of PC

hardware and many CMPSO parameter settings mentioned in Chapter 5 could be changed if

more (or less) advanced computing hardware and software is available.

The computer platform used for this research is a 64 bit Windows 7 Ultimate based PC

running an Intel Core i7 Quad Central Processing Unit (CPU) (model Intel Core i7 950) with a

variable clock between 2.8 and 3.2 GHz. The PC also has a 1.0 terabyte (TB) 7200rpm Serial

www.manaraa.com

75

Advanced Technology Attachment (SATA) III hard drive and 12 gigabytes (GB) of Double Data

Rate (DDR) 3 Random Access Memory (RAM).

The CMPSO algorithm software development was done using a 64 bit version of

MATLAB version R2010b (Version 7.11.0.584, win64). It should be noted that when CMPSO

was executed on the PC, the MATLAB process affinity was set to all cores of the CPU and the

MATLAB process priority was set to “high”. In addition, some of the CMPSO functions were

written in the C programming language and converted to “MATLAB Executable” or “MEX”

files to decrease the overall processing time. They are generally implemented when large,

repetitive processes are required in the computations. MEX files are essentially dynamically

linked routines that MATLAB can call externally [132]. They have the ability to access (read

from and write to) the MATLAB workspace where all of the computed data is stored for

processing.

The C programs were developed and compiled using Microsoft Visual C++ 2010

Express. The compilation process is part of the MATLAB MEX file development process, but

the C compiler is called externally. Figure 6.2 illustrates the software architecture for the

CMPSO algorithm implementation.

6.3 Computational Efficiency

As stated in Section 5.5, the use of the duality gap as the PSO fitness function eliminates

the need for a QP solver for every particle at every epoch. To prove this, a simple experiment is

used to illustrate the computational efficiency gains of CMPSO vs. a more conventional, or

“separated” PSO and SVR implementation. In the separated implementation, each particle’s

Lagrange multipliers are compute to reach a duality gap limit of 0.001 for every epoch.

Equation 6.11 represents an arbitrary exponentially weighted sinusoidal function with

additive Gaussian noise that is used to measure CMPSO computational efficiency.

www.manaraa.com

76

𝑦 = sin(0.2𝜋𝑥) 𝑒0.1𝑥 + 0.5𝑁(0,1) (6.11)

Figure 6.2: CMPSO Software Architecture

www.manaraa.com

77

A 41 point data set was created based on Equation 6.11 and is shown in Figure 6.3.

Figure 6.3: Example Time Series for Computational Efficiency Analysis

Note that the sample spacing between points in Figure 6.3 is 0.75.

For this experiment, a parallel PSO and SVR implementation was created to evaluate the

effect of eliminating the QP process from the CMPSO iteration cycle. Figure 6.4 shows the

block diagram of the two approaches considered.

Figure 6.4: Comparison of CMPSO Architecture vs. Typical Optimization Setup

www.manaraa.com

78

As seen in Figure 6.4, a typical optimization routine would require the use of a QP to

optimize the SVR problem for every particle and for every step (epoch) in the process.

Alternatively, the CMPSO process forces each potential SVR solution candidate to be feasible

and will continue until the duality gap is reached, eliminating the need for executing a QP solver

for every particle at every epoch.

To show the computational benefit CMPSO has vs. the other typical optimization

approach, the data set shown in Figure 6.3 was run 300 times for CMPSO and for a combined

PSO/SVR implementation. Table 6.1 shows the difference between the two approaches for

comparison.

Table 6.1: CMPSO vs. Alternative Optimization Implementation

Function or

Parameter

CMPSO Alternative

Number of

Particles

CMPSO uses 500 particles

regardless of application.

Maximum of 25.

SVR

Optimization

Technique

Uses PSO and at most one

pass of an SMO based QP

algorithm.

Uses same SMO based QP algorithm for

every particle at every epoch.

SVR Parameter

Optimization

PSO based. PSO based to only determine , C, and .

Algorithm

Stopping

Criteria

CMPSO halts when fitness

function (duality gap)  is less

than or equal to 0.001.

Same as CMPSO.

The alternative algorithm is only replacing the PSO part of CMPSO. The data is still

scaled and rescaled at the end of the process. This is necessary to ensure the solution space for

both approaches is the same. It is also important to note for this experiment that the exact same

code elements shown in Figure 6.2 used for CMPSO are used for the alternative method. This is

necessary to have a meaningful comparison between the two approaches.

www.manaraa.com

79

The 41 point time series defined in Equation 6.11 was generated 300 times, with different

values of noise added for each individual set. Each of the 300 time series sets were input to both

CMPSO and the alternative (PSO/SVR separated) optimization approach. Note the two

algorithms were not run concurrently. A set of timing metrics was recorded for each of the 300

runs for CMPSO and the alternative approach. At the time either of the algorithms starts, a time

stamp is recorded in MATLAB. When the optimization routine is complete, another time stamp

is recorded and the difference between the two is calculated and stored. The mean value of the

time to execute (time difference) for each algorithm over the 300 data sets was then computed.

In addition to the timing performance of each algorithm, other performance metrics were

calculated. First is the percentage of data sets where either of the two approaches converged to

the duality gap limit. The second is the NMSE estimation metric described in Section 6.1. Table

6.2 shows the performance results of the two approaches.

Table 6.2: CMPSO Performance vs. Alternative Optimization Implementation

Measured

Parameter
CMPSO PSO + SVR Notes

Mean Algorithm

Execution Time

(sec)

7.27

39.08

PSO + SVR used

minimum of 25 particles

Percentage of Runs

that Converged

99.0%

0.0

PSO + SVR never

converged to dual gap

limit

NMSE

Typically less than

0.005

{N/A}

Since PSO + SVR never

converged, NMSE was

not calculated

The experimental results show that 99% of the time CMPSO converged to a solution in

approximately seven seconds, typically with a very small NMSE of less than 0.005. By contrast,

running PSO and SVR separately, the solution never converged with the minimum number of

www.manaraa.com

80

particles (25) and it took more than five times longer for the PSO+SVR method to settle on

incorrect results. This means that the swarm in that approach essentially stagnated to a

suboptimal solution. If more particles are used in the alternative method to try and improve the

results, the processing time would only increase. This simple experiment shows that not only is

CMPSO a viable algorithm for approximating time series data, it is also more computationally

efficient than alternatives that use SVR and PSO separately.

6.4 Arbitrary Function Analysis

The CMPSO formulation is adaptable to many different kinds of data series. The first

example shown above is approximating an exponentially weighted sinusoidal function. This

section illustrates the utility of CMPSO for other several other arbitrary time series functions.

6.4.1 SINC Function

The SINC function is a common mathematical function and is defined in Equation 6.12.

𝑦 =
sin(𝑥)

𝑥
 (6.12)

CMPSO was run against this function for 101 data samples. Figure 6.5 shows the results

for this example. The CMPSO optimized the fit for this curve in 93 epochs. Note the blue curve

is the estimate after the first phase of CMPSO is complete where the  value is just under 0.25.

The blue curve is a close approximation of the curve, but this approximation is clearly good

enough to stop iterating over the , C, and  values as seen by the final result shown by the green

curve. The final statistical measures between the original data set and the CMPSO

approximation show an error mean of -0.015, an NMSE of 0.00026, an RMSE of 0.0053 and a

MAXE of 0.0065. All of these measures show excellent matching between the original data and

the CMPSO approximation.

www.manaraa.com

81

Figure 6.5: CMPSO Approximation of SINC Function

6.4.2 SINC Function with Missing Data

Another CMPSO utility is the ability of the algorithm to interpolate functions where data

is missing over certain regions. Using the same SINC function defined in Equation 6.12, we

now recreate the same 101 point data sample, but omit the data points where -0.35 < x < -0.25.

This represents about 5% of the data missing. Figure 6.6 shows the CMPSO performance.

Although there was not a significant amount of data missing, the error statistics show that the

approximation over the whole curve was still good. The error mean is -0.0017, the NMSE and

RMSE are 0.00026 and 0.0054, respectively, and the MAXE 0.0065. These values are very

similar to the previous example. The data presented here is for illustration purposes showing the

utility of CMPSO. A more challenging data set with missing data is illustrated in Section 5.4.3.

6.4.3 S&P 500 Data

The last three data examples showed CMPSO performance against arbitrary sinusoidal

and exponential based functions. CMPSO performed well for the regression and data

www.manaraa.com

82

interpolation applications including the estimation of missing data. We now examine CMPSO

performance against a real world application.

Figure 6.6: CMPSO Approximation of SINC Function with Missing Data

The next data set is an example of a common stock market index: the S&P 500 Index.

The S&P 500 is a stock market index based on the performance of 500 large companies. We

selected 75 samples of S&P 500 daily closing price from mid-October 2014 through the end of

January 2015 for analysis, as this data is publically available for download [133]. This is very

challenging data set to estimate as there are many variations and trends in the data as shown in

Figure 6.7, thus the reason these data samples were chosen for analysis. The statistical results

for this analysis show an error mean of -0.2192, NMSE and RMSE values of 0.0247 and 8.3060

respectively, and a MAXE of -25.0894. We will examine other real world data examples in

Section 6.4.2.

www.manaraa.com

83

Figure 6.7: CMPSO Approximation of S&P 500 Data

6.5 Benchmark and Competition Data Performance

The previous examples in Sections 6.2 and 6.3 showed several examples of CMPSO

performance against arbitrary functions as well as one real world application. The results

showed that CMPSO performed well against relatively easy and somewhat more complex data

sets with many trends and variations. We now explore CMPSO performance further by

estimating standard benchmark data sets that are commonly used to evaluate time series

prediction methods.

6.5.1 Mackey-Glass Benchmark Data

As seen in [1], Mackey-Glass benchmark data is a common artificial (synthesized) time

series benchmark by which time series prediction algorithms are evaluated, including SVR.

Mackey-Glass data is a nonlinear time delay differential equation which has both periodic and

chaotic dynamics [61]. The Mackey-Glass equation is represented in Equation 6.13.

𝑑𝑥(𝑡)

𝑑𝑡
= −bx(𝑡) +

𝑎𝑥(𝑡 − 𝜏)

1 + 𝑥(𝑡 − 𝜏)10
 (6.13)

www.manaraa.com

84

where x(t) is the time series representation, t is time,  is a delay factor and a and b are real

valued scale factors. There is another factor, t, not expressed in Equation 6.13 but it is typically

used for generating the samples of time series data. As published, the standard values for these

parameters are a = 0.2, b = 0.1,  = 17, x(0) = 1.2 (initial condition), and t = 0.1. In order to

generate the time series data, one must solve the differential equation. Figure 6.8 is an example

output of the function for the first 1000 seconds.

Figure 6.8: Mackey-Glass Data Example (First 1000 Seconds)

CMPSO performance has been compared to other published time series prediction

techniques [108] and has performed well. For comparison, there are two specific experiments

using this data that are presented in this research.

1. Regression: The first 2000 data points of the Mackey-Glass data, sampled every

15 samples (t = 0.1) are used to evaluate CMPSO regression capabilities.

www.manaraa.com

85

2. Time series prediction: Starting with the first 2000 data samples, sampled every

15 samples (t = 0.1), the CMPSO was trained and the following 1 to 30 sample

prediction horizons were estimated and compared to truth data. This process was

repeated 50 times, moving the starting sample training sample point by 100. The

resulting ensemble of prediction horizon data is then measured to evaluate

CMPSO accuracy (bias) and consistency.

Figure 6.9 illustrates the 2000 point Mackey-Glass data set used for evaluation.

Figure 6.9: Mackey-Glass Data Example (First 200 Seconds Used for Evaluation)

CMPSO comparison is against other SVR/SVM related techniques also using the

Mackey-Glass benchmark data for evaluation. The first comparison is to a (Regularized)

Orthogonal Least Squares algorithm that is SVM based [28]. This technique uses a least squares

method to reduce the number of training values similar to the strategy used for CMPSO in this

example. The performance stated in this reference is only for prediction for a +1, +5, and +10

sample prediction horizon, where each sample has a t of 0.1.

www.manaraa.com

86

The second is an SVR based approach using a radial basis function similar to CMPSO

[25]. In this example, the data is interpolated and there is no prediction application associated

with the publication. The third approach is also SVM based and again uses an SVR based

approach like CMPSO [34]. This SVR based application only uses the Mackey-Glass data to

evaluate performance for a one-step-ahead prediction horizon (+1 data sample). The fourth

CMPSO comparison is made against a prediction model called Kernel Dynamical Modeling

which is partially based on the use of kernel functions, similar to the SVR method used in

CMPSO [88]. This particular application uses the Mackey-Glass data set to again evaluate

performance for a one-step-ahead prediction horizon (+1 data sample).

Additionally, more recent approaches using SVR and Mackey-Glass benchmark data

have been examined and compared. One method is called Accurate Online Support Vector

Regression (AOSVR) [89]. This approach uses an SVR based algorithm, but also uses a

technique that improves the training efficiency and also varies the SVR user defined variables.

AOSVR also has a user defined parameter that bounds the regularization constant and it has to be

set by the user a priori.

Another recent SVR method for Mackey-Glass estimation is the Multiple Output SVR

(M-SVR) [90]. This technique uses multi-dimensional input/output training sets along with a

quadratic loss function to estimate future values of the function. The algorithm uses five

different models and uses PSO for model validation and selection. It should be noted that only

the MAPE metric was the only similar metric to what was calculated and used in other

publications.

The last current SVR based estimation is based on an iterative approach also using

multiple support vector regression models [91]. It basically predicts one step ahead and feeds the

www.manaraa.com

87

current predicted value (prediction horizon of +1) into another training set with one less sample.

The framework shown in this reference uses multiple SVR models, one for each prediction

horizon and then combines the results for a given prediction horizon. The results shown are for a

prediction horizon of +20.

Figure 6.10 shows the CMPSO estimation (interpolation) of the Mackey-Glass data set.

Figure 6.10: CMPSO Mackey-Glass Data Estimation

The performance metrics for interpolation show that the CMPSO estimation had an error

mean of -0.00017, an NMSE and RMSE of 0.0081 and 0.0242, respectively and a MAXE of

0.1690.

To calculate statistics for the prediction problem, a set of 100 Monte Carlo runs were

made, each with different random initialization points for CMPSO. The first 30 data points after

the last Mackey-Glass data set point were estimated 100 times and collected for analysis

(prediction horizon of [1,…,30]). The CMPSO prediction performance results are shown in

Table 6.3.

www.manaraa.com

88

Table 6.3: CMPSO Prediction Performance for Mackey-Glass Data

 Prediction Horizon Performance Metric

MSE NMSE RMSE

Interpolation 0.0006 0.0055 0.0199

+1 Sample 0.0006 0.0120 0.0254

+5 Samples 0.0014 0.0268 0.0379

+10 Samples 0.0032 0.0610 0.0569

+15 Samples 0.0062 0.1176 0.0787

+20 Samples 0.0104 0.1988 0.1018

+30 Samples 0.0214 0.4184 0.1461

One example run of the CMPSO estimate is shown in Figure 6.11 for the +1 through +30

samples prediction horizon.

 Figure 6.11: CMPSO Mackey-Glass Data Prediction

We now compare CMPSO prediction performance to the other five published time series

regression and prediction methods listed in this section. It should be noted that the published

www.manaraa.com

89

data used the MSE metric for comparison, or in one case MAPE. Table 6.4 is a summary of

CMPSO performance vs. the other methods.

Table 6.4: CMPSO Prediction Performance (MSE) vs. Other Techniques

Technique Regression Prediction Horizon (Samples)

+1 +5 +10 +20

CMPSO

(MAPE)

0.0006 0.0006

(2.57)

0.0014 0.0032 0.0104

ROLS [28] N/A 0.1064 0.1696 0.3248 N/A

SVR [25] 0.0004 N/A N/A N/A N/A

SVM+RT [34] N/A 0.5158 N/A N/A N/A

KDM [88] N/A 0.0066 N/A N/A N/A

AOSVR [89]

(two results that depend on a

user defined parameter setting)

N/A 0.0011 or

0.00005

N/A N/A N/A

M-SVR [90]

(MAPE)

N/A N/A

(0.748)

N/A N/A N/A

Iterative M-SVR [91]

N/A N/A N/A N/A 0.0065

+/-

0.0003

CMPSO performed well as compared to the published results using SVR based methods.

In at least one recent case, user defined parameters had to be adjusted for the given algorithm to

exceed CMPSO performance. More than half the cases CMPSO exceeded other relevant SVR

based time series prediction techniques as published.

6.5.2 EUNITE Competition Data

SVR based solutions have been examined for many real world applications including

Electrical Utility Load forecasting [134 to 148]. Coincidently, another common benchmark data

set used to evaluate time series prediction and regression algorithms is based on real world

electrical utility load data. In 2001, the European Network on Intelligent Technologies for Smart

www.manaraa.com

90

Adaptive Systems (EUNITE; see ref [62]) initiated a competition [63] to predict maximum

electrical loads for the East-Slovakia Power Distribution Company. The goal is to estimate

maximum daily power loads for the month of January 1999 based on the daily values of 1997

and 1998 of electrical load and temperature. The measures of performance for this problem were

both MAPE and MAXE (as defined in Section 6.1). It should be noted that the number of

samples used for performance estimation is 31 which corresponds to the number of days in

January.

Unlike the previous data sets analyzed in this chapter, this particular time series

estimation problem has multiple inputs: time, load power, and daily temperature. Clearly a

strategy will be needed to address all these factors and a way to implement CMPSO to estimate

the January 1999 maximum power loads.

The first observation is the relationship between day of the week and the maximum

power load. Figure 6.12 shows a plot of the mean of the maximum power load for 1997 (red

curve) and 1998 (green curve) as a function of the day of the week.

Figure 6.12: Mean of Maximum Power by Day of Week for 1997 and 1998

www.manaraa.com

91

It is clear from Figure 6.12 that the weekend days (Saturday, Sunday; Day 7 and Day 1 in

Figure 6.12) tend to draw less power than the rest of the working week and is apparently valid

year to year. Figure 6.13 is a view of the January 1997 (red curve) and January 1998 (green

curve) maximum power loads, time aligned such that the two data sets are aligned by day of the

week. There are trends surrounding the weekends vs. the work week, as noted by the relative

maximums of five days duration vs. the general minimums of two days duration that are clearly

visible.

Figure 6.13: Maximum Power by Day of the Week for January 1997 and January 1998

There is also a relationship between temperature and maximum power consumption for

any given day. This can be seen by looking at the day-of-the-week aligned difference in power

and temperature between 1997 and 1998. Figure 6.14 illustrates 360 sample differences between

1997 and 1998, time aligned to the day of the week.

www.manaraa.com

92

There appears to be an inverse relationship between temperature and maximum power as

seen in Figure 6.14. This can be quantified by calculating a correlation coefficient between the

two data sets as shown in Equation 6.14.

𝜌𝑥,𝑦 =
𝐸[(𝑥 − 𝑢𝑥)(𝑦 − 𝑢𝑦)]

𝜎𝑥𝜎𝑦
 (6.14)

Figure 6.14: Scatter Plot of the Difference in Power and Difference in Temperature for 360 Days

in 1997 and 1998 (Time Aligned by Day of the Week)

In this case, x and y are the change in temperature and change in maximum power load

respectively. The  and  values are the means and standard deviations of the two data sets

respectively. For the data sets shown in Figure 6.14, a correlation coefficient  was calculated

(Equation 6.14) to be -0.5041 over the 360 data points. This clearly shows that there is an

inverse relationship between maximum power and temperature.

www.manaraa.com

93

Given this relationship, we would like to construct a simple linear approximation

between the change in maximum power and the change in temperature shown in Figure 6.14.

This approximation is defined in equation 6.15.

∆𝑃= −3.4668∆𝑇 + 9.9573 (6.15)

where P and T are the change in power and change in temperature respectively.

For this data set, we are going to formulate two different strategies to estimate the

maximum power load for January 1999:

1. The mean value of the January 1997 and January 1998 data sets, time aligned to

the day of the week, will be used to estimate a regression curve using CMPSO.

2. Assuming the temperature for January 1999 is known (which was provided as part

of the EUNITE competition), we can now offset the amount of power (P) based

on the difference in temperature between January 1998 and January 1999 and use

the same CMPSO strategy listed in approach 1).

Table 6.5 shows the CMPSO results for the EUNITE competition, with and without the

linear approximation to the change in temperature and power relationship.

Table 6.5: CMPSO EUNITE Prediction Performance

Measured

Parameter

CMPSO CMPSO with

Linear Offset

Notes

MAPE 3.176 2.628 % Error

MAXE 84.931 74.663 Max Error in MW

As shown in Table 6.5, there is significant improvement by using the temperature data to

offset the values. Figure 6.15 shows the final results of this experiment. As can be seen in

www.manaraa.com

94

Figure 6.15, CMPSO estimates for the January 1999 maximum power load are very close to the

actual values, for both prediction strategies.

In addition, Figure 6.16 is where CMPSO (and the offset addition) would have ranked in

the competition based on the values shown in Table 6.6 (referenced from [62]). As shown in this

figure, an attempt was made to rank CMPSO and CMPSO with the maximum power offset with

the other competitors (in the absence of the actual result values from each competitor). There are

two sets of highlighted text boxes and lines for each of the CMPSO results in this figure. Based

on MAPE, it appears CMPSO alone would have ranked at least sixth. In the case where the

January 1999 temperature is included, CMPSO (plus the offset) would have ranked no worse

than third based on MAPE. Note that the MAXE values were also close to the other competitors

(refer to Table 6.5 and Figure 6.16).

Figure 6.15: CMPSO EUNITE Prediction Results

www.manaraa.com

95

The winners of this competition, Chen, Chang, and Lin [92] used an SVM/SVR approach

with multi-dimensional inputs to predict load. They also took into consideration additional

attributes such as if the day being predicted is a holiday. The authors further reported details of

their approach in [93], noting that there is no added value in using temperature data to predict the

load. Although the weighting of electrical load for a holiday was not taken into consideration for

this CMPSO benchmark evaluation, there was clearly an improvement in CMPSO prediction

performance by modeling temperature and including the offset in the results. For reference, the

next eight winners are listed in references [94 through 101]. There are several neural network

based approaches as well as fuzzy systems applied to this problem. It is interesting to note that

SVR was not considered in any of the top competitors, except for the winner of the competition

and CMPSO.

Figure 6.16: CMPSO EUNITE Results as Compared to Top 9 Competitors (from [62])

There are several SVM/SVR based research efforts since the competition was held that

use EUNITE data as benchmark data for evaluation. These methods are used as comparison to

www.manaraa.com

96

CMPSO, with and without the simple delta power offset strategy. Table 6.6 summarizes the

results.

The first method uses an Empirical Mode Decomposition (EMD) and SVR hybrid

method [102]. The EMD decomposes the data into smaller subsets at which point SVR is

applied. Another SVM based method is described in [103], where a Least Squares SVM (LS-

SVM) approach is used along with a grid search based model as well as a Bayesian framework.

Also a grid based pattern search is used to evaluate the SVR user defined parameters.

The next reference compares many different models including ANNs and SVMs and

applies them to the EUNITE data [104]. As it turns out, the best approach presented here was an

Auto-Regressive type model (AR). Another SVM based approach is given in [105], where the

past seven days are used to predict the next day ahead. Again, a Radial Basis function is used for

the kernel. Another LS-SVM based approach is given that uses a k-nearest neighbors approach

to help identify training patterns for the SVM [106]. Recall the LS-SVM uses a different loss

function in the formulation as compared to CMPSO’s -insensitive loss function.

6.5.3 CATS Competition Data

The last benchmark data set used to evaluate CMPSO is based on an artificially generated

time series. In 2004 at the International Joint Conference on Neural Networks, a competition

was organized to compare different prediction methods using a proposed CATS (Competition on

Artificial Time Series) benchmark time series data of 5000 samples, among which 100 samples

are missing [64]. The goal of the competition was to predict five sets of 20 missing data points

each from the given data of 5000 samples and compare the methods using two criteria. The first

was the MSE for the four missing data gaps at sample indices 981 to 1000, 1981 to 2000, 2981 to

3000, and 3981 to 4000 in addition to the last omitted 20 data points with sample indices 4981 to

www.manaraa.com

97

5000. This error is denoted as E1 in the competition literature. The second was the MSE for the

first four missing data gaps only. This error is denoted as E2 and was meant to only evaluate the

effectiveness of the interpolation of a given algorithm versus the prediction estimate in E1 (the

last 20 omitted samples). Figure 6.17 shows the entire CATS data set.

Table 6.6: CMPSO EUNITE Prediction Performance vs. Post Competition SVM Methods

Method Metric

MAPE MAXE MSE Notes

LS-SVM with k-

nearest neighbor [Ref

106]

1.71 40.99 N/A

LS-SVM [Ref 103] 1.97 39.778 N/A Bayesian Approach

EMD-SVR [Ref 102] 1.98 N/A 284.3

CMPSO with Linear

Offset
2.628 74.663 594.3

Offset Applied for Jan 1999

Temperature Data

CMPSO 3.176 84.931 908.8

SVM Model [Ref 105] 3.67 N/A N/A

AR Model [Ref 104] 6.69 N/A N/A
AR Type Model Showed

Better Result than SVM

The strategy for adapting CMPSO was straight forward for this particular application.

For each of the first four data gaps, every tenth data sample was used. Half of the samples were

before the gap and the other half after the gap. In addition, ten consecutive samples were used

just before and after the data gap for a total of 94 data points per set. For the last data set, a

similar strategy of every 10 data samples was selected prior to the end of the data set along with

the last 20 sequential samples for a total of 138 samples. Every sample was estimated between

the first and last index of the data set and compared to the given results for evaluation.

www.manaraa.com

98

Table 6.7 shows the CMPSO results as compared to the top ten results in descending

order of E1 MSE. From the results, CMPSO has the lowest E1 and E2 MSE scores in the

competition. Since the competition concluded, there have been other time series prediction

methods that have used the CATS benchmark for evaluation. These are also included in Table

6.7 and are marked with an asterisk (*). As seen in the table, CMPSO still outperformed all of

the other more recent methodologies.

Figure 6.17: CATS Data

Figures 6.18 through 6.22 show the CMPSO results against the four missing gaps of data

as well as the last extrapolation data set. The red curve is the original data set with the red

circles being the actual missing data points (truth data). The blue curve (and blue circles) is the

CMPSO estimate. As seen from these figures, there is very good agreement between the actual

CATS data and the CMPSO results.

www.manaraa.com

99

Table 6.7: CMPSO CATS Prediction Performance vs. Top Ten Entries and Recent Publications

E1 MSE E2 MSE Model

113 140 CMPSO

143 129
ANN and AdaBoost* [118]; Single Global

Model

262 239
ANN and AdaBoost* [118]; Multiple Local

Models

287 N/A Variance Minimization LS-SVM* [120]

390 288 Dynamic Factor Graphs* [121]

408 346 Kalman Smoother [107]

441 402 Recurrent Neural Networks [108]

502 418 Competitive Associative Net [109]

530 370
Weighted Bidirectional Multi-stream

Extended Kalman Filter [110]

577 395 SVCA Model [111]

644 542 MutliGrid-Based Fuzzy System [112]

653 351 Double Quantized Forecasting Method [113]

660 442 Time-reversal Symmetry Method [114]

676 677
BYY Harmony Learning Based Mixture of

Experts Model [115]

725 222 Ensemble Models [116]

1215 979
Deep Belief Network with Boltzmann

Machines* (best value) [119]

2510 2450 ANN Based Approach* (best value) [117]

www.manaraa.com

100

Figure 6.18: CMPSO Estimate for CATS Data Set 1

Figure 6.19: CMPSO Estimate for CATS Data Set 2

www.manaraa.com

101

Figure 6.20: CMPSO Estimate for CATS Data Set 3

Figure 6.21: CMPSO Estimate for CATS Data Set 4

www.manaraa.com

102

Figure 6.22: CMPSO Estimate for CATS Data Set 5

www.manaraa.com

103

CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

Support Vector Machines (SVMs) are powerful learning mechanisms that have been

developed and matured over the last 15+ years. They provide a method for predicting and

estimating time series for a myriad of applications including financial market forecasting,

weather and environmental parameter estimation, electrical utility loading prediction, machine

reliability forecasting, various signal processing and control system applications, and several

other applications. Non-traditional time series prediction methods are necessary for these types

of applications due to the highly non-linear aspects of the data and processes.

Support Vector Regression (SVR) research continues to be a viable approach in the

prediction of time series data in non-linear systems. Many methods and alternatives exist in the

design of SVRs and a great deal of flexibility is left to the designer in its implementation. The

underlying motivation behind the development of CMPSO is to help the designer in defining

implementation details and in providing a mechanism by which to tune SVR for a wide variety

of time series prediction and regression problems.

CMPSO is a unique fusion of Support Vector Regression and Particle Swarm

Optimization algorithms that attempts to optimize SVR free parameters , C, and , while

minimizing the need for excess computational resources by reducing the required solution space.

This research provides detailed analysis of the CMPSO technique and also provides proof of

www.manaraa.com

104

performance by testing CMPSO performance against many different and diverse data sets. In all

the presented sample cases, CMPSO has met or exceeded the performance of many other

different time series regression and prediction algorithms while not requiring any algorithm

tuning or modification. No user intervention is required to execute CMPSO. Based on results

shown in this research, CMPSO is a viable SVR based time series regression and estimation

approach as compared to other comparable SVM/SVR approaches as well as Neural Network

based algorithms.

CMPSO has also demonstrated good performance against artificial data series as well as

real world data. CMPSO has demonstrated good performance against financial market data such

as the S&P 500 example shown in chapter 6. Against Mackey-Glass non-linear data, CMPSO

performed well against other similar algorithms in the MSE sense. As compared to real world

applications such as electrical load forecasting, CMPSO would have placed at least third in the

EUNITE competition. Its performance based on more recent publications using EUNITE data

shows that it is at least within one percentage point from a MAPE performance measure

standpoint. CMPSO would have won the CATS competition, not only against the applicants in

the original contest, but also against more recent time series regression and prediction

algorithms.

7.2 Future Work

There are several topics of advance research that can be considered beyond the CMPSO

formulation:

 Kernel Function Selection: The presented research used a Radial Basis Function

as the Kernel for the SVR implementation, but as stated in Chapter 3, there are

other functions that could be used or possible a combination of Kernel Functions.

www.manaraa.com

105

 PSO Parameter Tuning: The computational performance aspects of the CMPSO

software implementation were not in scope for this research, but alternative

implementations (software hosting) on other computing platforms may result in

other PSO parameter settings.

 CMPSO Distributed Computing: The use of multiple computing platforms to

simultaneously employ different swarms could be considered to further increase

the computational efficiency of the process and possibly handle much larger data

sets in a smaller amount of time.

 Selection of Alternative Loss Functions: The SVR formulation in Chapter 3

assumed one kind of loss function for the dual objective function. Other functions

exist and could potentially be used as part of the CMPSO framework. This was

evident in the EUNITE competition data that used a least squares type function.

 Multi-Dimensional Input Data: The focus of this research has been the two

dimensional case where there is only one independent variable. CMPSO and the

SVR implementation can also be altered to handle multi-dimensional input

vectors, where a vector could be a set of other quantized information or data

regarding the dependent variable or underlying process.

 Pattern Recognition Applications: This research is for time series prediction and

regression applications. The same methodology could be used for SVM pattern

recognition applications.

www.manaraa.com

106

REFERENCES

[1]

N. Sapankevych and R. Sankar, "Time Series Prediction Using Support Vector

Machines: A Survey", IEEE Computational Intelligence, vol. 4, no. 2, pp. 24-38, May

2009.

[2]

V. N. Vapnik, " The Nature of Statistical Learning Theory", Springer, 1995.

[3]

V. N. Vapnik, “Statistical Learning Theory”, John Wiley and Sons, 1998.

[4]

R. Eberhart and J. Kennedy, “A New Optimizer Using Particle Swarm Theory,” in Proc.

6th Int. Symp. Micro Machine and Human Science (MHS ’95), pp. 39-43, 1995.

[5]

J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in IEEE Proceedings on the

Internation Conference of Neural Networks, vol. 4, pp. 1942-1948, 1995.

[6] J. Kennedy and R. C. Eberhart, “Swarm Intelligence”, Morgan Kaufmann, 2001.

[7] J. Kennedy, “The Behavior of Particles,” Proceedings of the 7
th

 Annual Conference on

Evolutionary Programming (EP-98), Lecture Notes in Computer Science, vol. 1447, pp.

581-589, Mar. 1998.

[8] R. Poli, J. Kennedy, and T. Blackwell, "Particle Swarm Optimization: An Overview",

Swarm Intelligence, vol. 1, pp. 33-57, 2007.

[9] R. Poli, "An Analysis of Publications on Particle Swarm Optimization Applications",

University of Essex, UK, Department of Computer Science, Technical Report CSM-469,

May 2007 (Revised Nov. 2007).

[10] J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in Electromagnetics”,

IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397-407, Feb. 2004.

[11] D. W. Boeringer and D. H. Werner, “Particle Swarm Optimization Versus Genetic

Algorithms for Phased Array Synthesis”, IEEE Transactions on Antennas and

Propagation, vol. 52, no. 3, pp. 771-779, Mar. 2004.

[12] S. J. Orfanidis, “Optimum Signal Processing: An Introduction – Second Edition”,

MacMillan Publishing Company, 1988.

www.manaraa.com

107

[13] R. D. Yates, D. J. Goodman, “Probability and Stochastic Processes”, John Wiley and

Sons, 2002.

[14] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems”,

Transactions of the ASME – Journal of Basic Engineering, vol. 82 (Series D), pp. 35-45,

1960.

[15] S. S. Blackman, “Multiple-Target Tracking with Radar Applications”, Artech House,

1986.

[16] G. Minkler, J. Minkler, “Theory and Application of Kalman Filtering”, Magellan Book

Company, 1993.

[17] R. G. Brown, P. Y. C. Hwang, “Introduction to Random Signals and Applied Kalman

Filtering – Second Edition”, John Wiley and Sons, 1992.

[18] S. Haykin, “Neural Networks Second Edition”, Prentice Hall, 1999.

[19] A. K. Jain, J. Mao, “Artificial Neural Networks: A Tutorial”, Computer, vol. 29, issue 3,

Mar. 1996.

[20] B. Schölkopf, A. J. Smola, and C. Burges, “Advances in Kernel Methods – Support

Vector Learning”, MIT Press, Cambridge, MA, 1999.

[21] N. Cristianini and J. Shawe-Taylor, “An Introduction to Support Vector Machines and

other Kernel-Based Learning Methods”, Cambridge University Press, 2000.

[22] A. J. Smola and B. Schölkopf, “A Tutorial on Support Vector Regression”, NeuroCOLT

Technical Report, Royal Holloway College, London, UK, 1998.

[23] B. Schölkopf, A. J. Smola, and C. Burges, “Advances in Kernel Methods – Support

Vector Learning”, MIT Press, Cambridge, MA, 1999.

[24] K.-R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, V. Vapnik,

“Predicting Time Series with Support Vector Machines”, Proceedings of the International

Conference on Artificial Neural Networks, Springer, 1997.

[25] S. Mukherjee, E. Osuna, and F. Girosi, “Nonlinear Prediction of Chaotic Time Series

Using Support Vector Machines”, Proceedings of the 1997 IEEE Workshop – Neural

Networks for Signal Processing VII, pp. 511-520, Sep. 1997.

[26] N. de Freitas, M. Milo, P. Clarkson, M. Niranjan, and A. Gee, “Sequential Support

Vector Machines”, Proceedings of the 1999 IEEE Signal Processing Society Workshop –

Neural Networks for Signal Processing IX, pp. 31-40, Aug. 1999.

www.manaraa.com

108

[27] S. Rüping, “SVM Kernels for Time Series Analysis”, CS Department, AI Unit,

University of Dortmund, 44221 Dortmund, Germany, 2001.

[28] K. L. Lee and S. A. Billings, “Time Series Prediction Using Support Vector Machines,

the Orthogonal and Regularized Orthogonal Least-Squares Algorithms”, International

Journal of Systems Science, vol. 33, no. 10, pp. 811-821, 2002.

[29] L. Cao and Q. Gu, “Dynamic Support Vector Machines for Non-Stationary Time Series

Forecasting”, Intelligent Data Analysis, vol. 6, no. 1, pp. 67-83, 2002.

[30] J.-Y. Zhu, B. Ren, H.-X. Zhang, and Z.-T. Deng, “Time Series Prediction via New

Support Vector Machines”, Proceedings of the First International Conference on

Machine Learning and Cybernetics, vol. 1, pp. 364-366, Nov. 2002.

[31] S. Rüping and K. Morik, “Support Vector Machines and Learning About Time”,

Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), vol. 4, pp. 864-867, Apr. 2003.

[32] L. J. Cao, “Support Vector Machine Experts for Time Series Prediction”,

Neurocomputing, vol. 51, pp. 321-339, Apr. 2003.

[33] Y. Mei-Ying and W. Xiao-Dong, “Chaotic Time Series Prediction Using Least Squares

Support Vector Machines”, Chinese Physics, vol. 13, no. 4, pp. 454-458, Apr. 2004.

[34] J. M. Górriz, C. G. Puntonet, M. Salmerón, R. Martin-Clemente, and S. Hornillo-

Mellado, “Using Confidence Interval of a Regularization Network”, Proceedings of the

12th IEEE Mediterranean Electrotechnical Conference (MELECON 2004), pp. 343-346,

May 12-15, 2004.

[35] A. Hornstein and U. Parlitz, “Bias Reduction for Time Series Models Based on Support

Vector Regression”, International Journal of Bifurcation and Chaos, vol. 14, no. 6, pp.

1947-1956, 2004.

[36] J. M. Górriz, C. G. Puntonet, M. Salmerón, J. J. G. de la Rosa, “A New Model for Time

Series Forecasting Using Radial Basis Functions and Exogenous Data”, Neural

Computing and Applications, vol. 13, no. 2, pp. 101-111, Jun. 2004.

[37] C. Cortes and V. Vapnik, “Support-Vector Networks”, Machine Learning, pp. 273-297,

1995.

[38] Support Vector Machines: http://www.support-vector.net/index.html (Jan 2015)

[39] Kernel Machines: http://www.kernel-machines.org/index.html (Jan 2015)

[40] International Neural Network Society: http://www.inns.org/ (Jan 2015)

http://www.support-vector.net/index.html
http://www.kernel-machines.org/index.html
http://www.inns.org/

www.manaraa.com

109

[41] Neural Computation: http://www.mitpressjournals.org/loi/neco (Jan 2015)

[42] European Neural Network Society: http://www.snn.ru.nl/enns/ (Jan 2015)

[43] Asia Pacific Neural Network Assembly: http://www.apnna.net/apnna (Jan 2015)

[44] Japanese Neural Network Society: http://www.jnns.org/english/index.php (Jan 2015)

[45] Journal of Artificial Intelligence Research: http://www.jair.org/ (Jan 2015)

[46] S. Rüping, http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html (Jan

2015)

[47] R. Collobert and S. Bengio, “SVMTorch: Support Vector Machines for Large-Scale

Regression Problems”, Journal of Machine Learning Research, vol. 1, pp. 143-160, Sep.

2001.

[48] K. Pelckmans, J. A. K. Suykens, T. Van Gestel, J. De Brabanter, L. Lukas, B. Hamers, B.

De Moor, and J. Vandewalle

http://www.esat.kuleuven.be/sista/lssvmlab/tutorial/lssvmlab_paper0.pdf (Jan 2015)

[49] A. Schwaighofer,

http://www.princeton.edu/~kung/ele571/571-MatLab/571svm/svmtrain.m

(Jan 2015)

[50] SMO Matlab Based Algorithm Implementation:

http://www.codeforge.com/read/131255/svm_SMO.m__html (Jan 2015)

[51] X. Wang, J. Lu and J. Liu, “Wavelet Transform and PSO Support Vector Machine Based

approach for Time Series Forecasting”, Proceedings of the International Conference on

Artificial Intelligence and Computational Intelligence (AICI), pp. 46-50, Nov. 2009.

[52] J. Hu, P. Gao, Y. Yao, and X. Xie, “Traffic Flow Forecasting with Particle Swarm

Optimization and Support Vector Regression”, Proceedings of the 17
th

 International

Conference on Intelligent Transportation Systems (ITSC), pp. 2267-2268, Oct. 2014.

[53] Y. Wen, Y. Chen, “Modified Parallel Cat Swarm Optimization in SVM Modeling for

Short-term Cooling Load Forecasting”, Journal of Software, vol. 9, no. 8, pp. 2093-2104,

Aug. 2014.

[54] X. Qiu, L. Zhang, Y. Ren, P. N. Suganthan, and G. Amaratunga, “Ensemble Deep

Learning for Regression and Time Series Forecasting”, Proceedings of the IEEE

Symposium on Computational Intelligence in Ensemble Learning (CIEL), pp. 1-6, Dec.

2014.

http://www.mitpressjournals.org/loi/neco
http://www.snn.ru.nl/enns/
http://www.apnna.net/apnna
http://www.jnns.org/english/index.php
http://www.jair.org/
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html
http://www.esat.kuleuven.be/sista/lssvmlab/tutorial/lssvmlab_paper0.pdf
http://www.princeton.edu/~kung/ele571/571-MatLab/571svm/svmtrain.m
http://www.codeforge.com/read/131255/svm_SMO.m__html

www.manaraa.com

110

[55] C. Rajeswari, B. Sathiyabhama, S. Devendiran, and K. Manivannan, “Bearing Fault

Diagnosis Using Wavelet Packet Transform, Hybrid PSO, and Support Vector Machine”,

Proceedings of the 12
th

 Global Congress on Manufacturing and Management (GCMM),

Procedia Engineering, vol. 97, pp. 1772-1783, 2014.

[56] P. Shinde and T. Parvat, “Analysis on: Intrusions Detection Based on Support Vector

Machine Optimized with Swarm Intelligence”, International Journal of Computer

Science and Mobile Computing, vol. 3, no. 12, pp. 559-566, Dec. 2014.

[57] W. Wenhai and D. Jiandong, “Short-term Wind Power Forecasting Based on Maximum

Correntropy Criterion”, Proceedings of the International Conference on Power System

Technology (POWRCON), pp. 2800-2805, Oct. 2014

[58] Z. Hu, Q. Liu, Y. Tian, and Y. Liao, “A Short-term Wind Speed Forecasting Model

Based on Improved QPSO Optimizing LSSVM”, Proceedings of the International

Conference on Power System Technology (POWERCON), pp. 2806-2811, Oct. 2014.

[59] H. Dong, X. Zhu, Y. Liu, F. He, and G. Huo, “Iris Recognition Based on CPSO

Algorithm for Optimizing Multichannel Gabor Parameters”, Journal of Computational

Information Systems, vol. 11, no. 1, pp. 333-340, 2015.

[60] J. F. L. de Oliveira and T. B. Ludermir, “A Distributed PSO-ARIMA-SVR Hybrid

System for Time Series Forecasting”, Proceedings of the IEEE International Conferences

on Systems, Man, and Cybernetics (SMC), pp. 3867-3872, Oct. 2014.

[61] http://www.scholarpedia.org/article/Mackey-Glass_equation (Jan 2015)

[62] http://www.eunite.org (Jan 2015)

[63] http://neuron-ai.tuke.sk/competition (Jan 2015)

[64] Lendasse, E. Oja, O. Simula, and M. Verleysen, “Time Series Prediction Competition:

The CATS Benchmark”, Proceedings of the IEEE International Joint Conference on

Neural Networks (IJCNN), pp. 1615-1620, Jul. 2004.

[65] T. B. Trafalis and H. Ince, “Support Vector Machine for Regression and Applications to

Financial Forecasting”, Proceedings of the IEEE-INNS-ENNS International Joint

Conference on Neural Networks (IJCNN), vol. 6, pp. 348-353, Jul. 2000.

[66] F. E. H. Tay and L. J. Cao, “Application of Support Vector Machines in Financial Time

Series Forecasting”, Omega, vol. 29, pp. 309-317, 2001.

[67] T. Van Gestel, J. A. K. Suykens, D.-E. Baestaens, A. Lambrechts, G. Lanckriet, B.

Vandaele, B. De Moor, and J. Vandewall, “Financial Time Series Prediction Using Least

Squares Support Vector Machines Within the Evidence Framework”, IEEE Transactions

on Neural Networks, vol. 12, no. 4, pp. 809-821, Jul. 2001.

http://www.scholarpedia.org/article/Mackey-Glass_equation
http://www.eunite.org/
http://neuron-ai.tuke.sk/competition

www.manaraa.com

111

[68] F. E. H. Tay and L. J. Cao, “Improved Financial Time Series Forecasting by Combining

Support Vector Machines with Self-Organizing Feature Map”, Intelligent Data Analysis,

vol. 5, no. 4, pp. 339-354, 2001.

[69] F. E. H. Tay and L. J. Cao, “Modified Support Vector Machines in Financial Time

Series Forecasting”, Neurocomputing, vol. 48, pp. 847-861, Oct. 2002.

[70] F. E. H. Tay and L. J. Cao, “-Descending Support Vector Machines for Financial Time

Series Forecasting”, Neural Processing Letters, vol. 15, no. 2, pp. 179-195, 2002.

[71] H. Yang, I. King, and L. Chan, “Non-Fixed and Asymetrical Margin Approach to Stock

Market Prediction using Support Vector Regression”, Proceedings of the 9
th

 International

Conference on Neural Information Processing (ICONIP), vol. 3, pp. 1398-1402, Nov.

2002.

[72] H. Yang, L. Chan, and I. King, “Support Vector Machine Regression for Volatile Stock

Market Prediction”, Proceedings of the Third International Conference on Intelligent

Data Engineering and Automated Learning (IDEAL), Springer, pp. 391-396, 2002.

[73] A. Abraham, N. S. Philip, and P. Saratchandran, “Modeling Chaotic Behavior of Stock

Indices Using Intelligent Paradigms”, International Journal of Neural, Parallel, and

Scientific Computations, vol. 11, nos. 1 and 2, pp. 143-160, Mar. 2003.

[74] H. Yang, “Margin Variations in Support Vector Regression for the Stock Market

Prediction”, Ph. D. Thesis, Chinese University of Hong Kong, Jun. 2003.

[75] P. Ongsritrakul and N. Soonthornphisaj, “Apply Decision Tree and Support Vector

Regression to Predict the Gold Price”, Proceedings on the International Joint Conference

on Neural Networks (IJCNN), vol. 4, pp. 2488-2492, Jul. 2003.

[76] L. J. Cao and F. E. H. Tay, “Support Vector Machine with Adaptive Parameters in

Financial Time Series Forecasting”, IEEE Transaction on Neural Networks, vol. 14, no.

6, pp. 1506-1518, Nov. 2003.

[77] Y. Liang and Y. Sun, “An Improved Method of Support Vector Machine and its

Application to Financial Time Series Forecasting”, Progress in Natural Science, vol. 13,

no. 9, pp. 696-700, 2003.

[78] A. Abraham and A. A. Yeung, “Integrating Ensemble of Intelligent Systems for

Modeling Stock Indices”, Lecture Notes in Computer Science, vol. 2687, pp. 774-781,

2003.

[79] K.-J. Kim, “Financial Time Series Forecasting Using Support Vector Machines”,

Neurocomputing, vol. 55, pp. 307-319, 2003.

www.manaraa.com

112

[80] Y. Bao, Y. Lu, and J. Zhang, “Forecasting Stock Price by SVMs Regression”, Lecture

Notes in Computer Science, vol. 3192, pp. 295-303, 2004.

[81] H. Yang, K. Huang, L. Chan, I. King, and M. R. Lyu, “Outliers Treatment in Support

Vector Regression for Financial Time Series Prediction”, Proceedings of the 11
th

International Conference on Neural Information Processing (ICONIP) - Lecture Notes in

Computer Science, vol. 3316, pp. 1260-1265, 2004.

[82] W. Huang, Y. Nakamori, S.-Y. Wang, “Forecasting Stock Market Movement Direction

with Support Vector Machine”, Computers and Operations Research, vol. 32, no. 10, pp.

2513-2522, Oct. 2005.

[83] Y.-K. Bao, Z.-T. Liu, L. Guo, and W. Wang, “Forecasting Stock Composite Index by

Fuzzy Support Vector Machines Regression”, Proceedings of the Fourth International

Conference on Machine Learning and Cybernetics , pp. 3535-3540, Aug. 2005.

[84] D.-Z. Cao, S.-L. Pang and Y.-H. Bai, “Forecasting Exchange Rate Using Support Vector

Machines”, Proceedings of the Fourth International Conference on Machine Learning

and Cybernetics, pp. 3448-3452, Aug. 2005.

[85] T. Z. Tan, C. Quek, and G. S. Ng, “Brain-inspired Genetic Complimentary Learning for

Stock Market Prediction”, Proceedings of the IEEE Congress on Evolutionary

Computation, vol. 3, pp. 2653-2660, Sep. 2005.

[86] N. Sapankevych and R. Sankar, “Constrained Motion Particle Swarm Optimization and

Support Vector Regression for Non-Linear Time Series Regression and Prediction

Applications”, Proceedings of the 12th International Conference on Machine Learning

and Applications (ICMLA), pp. 473-477, Dec. 2013.

[87] X. Qiu, L. Zhang, Y. Ren, P. N. Suganthan, and G. Amaratunga, “Ensemble Deep

Learning for Regression and Time Series Forecasting”, Proceedings of the IEEE

Symposium on Computational Intelligence in Ensemble Learning (CIEL), pp. 1-6, Dec.

2014.

[88] L. Ralaivola and F. d’Alche-Buc, “Dynamical Modeling with Kernels for Nonlinear

Time Series Prediction”, Proceedings of the Neural Information Processing Systems

(NIPS), pp. 8-13, Dec. 2003.

[89] O. A. Omitaomu, M. K. Jeong, and A. B. Badiru, “Online Support Vector Regression

With Varying Parameters for Time-Dependent Data”, IEEE Transactions on Systems,

Man, and Cybernetics, Part A: Systems and Humans, vol. 41, no. 1, pp. 191-197, Jan.

2011.

[90] Y. Bao, T. Xiong, Z. Hu, “Multi-step-ahead Time Series Prediction Using Multiple-

Output Support Vector Regression”, Neurocomputing, vol. 129, pp. 482-493, 2014.

www.manaraa.com

113

[91] L. Zhang, W.-D. Zhou, P.-C. Chang, J.-W. Yang, and F.-Z. Li, “Iterated Time Series

Prediction with Multiple Support Vector Regression Models”, Neurocomputing, vol. 99,

pp. 411-422, 2013.

[92] M.-W. Chang, B.-J. Chen, and C.-J. Lin, “EUNITE Network Competition: Electricity

Load Forecasting”, Nov. 2001.

[93] B.-J. Chen, M.-W. Chang, and C.-J. Lin, “Load Forecasting Using Support Vector

Machines: A Study on EUNITE Competition 2001”, IEEE Transactions on Power

Systems, vol. 19, no. 4, pp. 1821-1830, Nov. 2004.

[94] D. Esp, “Adaptive Logic Networks for East Slovakian Electrical Load Forecasting”,

EUNITE Competition, 2001 (see [62]).

[95] W. Brockmann and S. Kuthe, “Different Models to Forecast Electricity Loads”, EUNITE

Competition, 2001 (see [62]).

[96] S. Zivcac, “Electricity Load Forecasting using ANN”, EUNITE Competition, 2001 (see

[62]).

[97] W. Kowalczyk, “Averaging and data enrichment: two approaches to electricity load

forecasting”, EUNITE Competition, 2001 (see [62]).

[98] A. Lewandowski, F. Sandner, and P. Protzel, “Prediction of electricity load by modeling

the temperature dependencies”, Report for EUNITE 2001 Competition, 2001 (see [62]).

[99] F. Ortega et. al., “An Hybrid Approach to Prediction of Electric Load with MARS and

Kohonen Maps”, EUNITE Competition, 2001 (see [62]).

[100] I. King and J. Tindle, “Storage of Half Hourly Electric Metering Data and Forecasting

with Artificial Neural Network Technology”, EUNITE Competition, 2001 (see [62]).

[101] A. Lotfi, “Application of Learning Fuzzy Inference Systems in Electricity Load

Forecast”, EUNITE Competition, 2001 (see [62]).

[102] B. Bican and Y. Yaslan, “A Hybrid Method for Time Series Prediction Using EMD and

SVR”, Proceedings of the 6
th

 International Conference on Communications, Control, and

Signal Processing (ISCCSP), pp. 566-569, May 2014.

[103] X. Yang, “Comparison of the LS-SVM Based Load Forecasting Models”, Proceedings of

the International Conference on Electronic and Mechanical Engineering and Information

Technology (EMEIT), vol. 6, pp. 2942-2945, Aug. 2011.

[104] I. Fernandez, C. E. Borges, and Y. K. Penya, “Efficient Building Load Forecasting”,

Proceedings of the IEEE 16
th

 Conference on Emerging Technologies and Factory

Automation (ETFA), pp. 1-8, Sep. 2011.

www.manaraa.com

114

[105] B. E. Turkay and D. Demren, “Electrical Load Forecasting Using Support Vector

Machines”, Proceedings of the 7
th

 International Conference on Electrical and Electronics

Engineering (ELECO), vol. I, pp. 49-53, Dec. 2011.

[106] T. T. Chen and S. J. Lee, “A Weighted LS-SVM Based Learning System for Time Series

Forecasting”, Information Sciences, vol. 299, pp. 99-116, Apr. 2015.

[107] S. Sarkka, A. Vehtari, and J. Lampinen, “Time Series Prediction by Kalman Smoother

with Cross Validated Noise Density”, Proceedings of the IEEE International Joint

Conference on Neural Networks (IJCNN), vol. 2, pp. 1653-1657, Jul. 2004.

[108] X. Cai, N. Zhang, G. Venayagamoorthy, and D. Wunsch, “Time Series Prediction with

Recurrent Neural Networks Using a Hybrid PSO-EA Algorithm”, Proceedings of the

IEEE International Joint Conference on Neural Networks (IJCNN), vol. 2 pp. 1647-1652,

Jul. 2004.

[109] S. Kurogi, T. Ueno, and M. Sawa, “Batch Learning Competitive Associative Net and Its

Application to Time Series Prediction”, Proceedings of the IEEE International Joint

Conference on Neural Networks (IJCNN), vol. 2, pp. 1591-1596, Jul. 2004.

[110] X. Hu and D. Wunsch, “IJCNN 2004 Challenge Problem: Time Series Prediction with a

Weighted Bidirectional Multi-stream Extended Kalman Filter”, Proceedings of the IEEE

International Joint Conference on Neural Networks (IJCNN), vol. 2, pp. 1641-1645, Jul.

2004.

[111] F. Palacios-Gonzalez, “A SVCA Model for The Competition on Artificial Time Series”,

Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN),

vol. 4, pp. 2777-2782, Jul. 2004.

[112] L. J. Herrera Maldonado, H. Pomares, I. Rojas, J. Gonzalez, and M. Awad, “MultiGrid-

Based Fuzzy Systems for Time Series Forecasting: CATS Benchmark IJCNN

Competition”, Proceedings of the IEEE International Joint Conference on Neural

Networks (IJCNN), vol. 2, pp. 1603-1608, Jul. 2004.

[113] G. Simon, J. A. Lee, M. Verleysen, and M. Cottrell, “Double Quantization Forecasting

Method for Filling Missing Data in the CATS Time Series”, Proceedings of the IEEE

International Joint Conference on Neural Networks (IJCNN), vol. 2, pp. 1635-1640, Jul.

2004.

[114] P. F. Verdes, P. M. Granitto, M. I. Szeliga, A. Rebola, and H. A. Ceccatto, “Prediction of

the CATS benchmark exploiting time-reversal symmetry”, Proceedings of the IEEE

International Joint Conference on Neural Networks (IJCNN), vol. 2, pp. 1631-1634, Jul.

2004.

www.manaraa.com

115

[115] H.-W. Chan, W.-C. Leung, K.-C. Chiu, and L. Xu, “BYY Harmony Learning Based

Mixture of Experts Model for Non-stationary Time Series Prediction”, Proceedings of

the IEEE International Joint Conference on Neural Networks (IJCNN), Jul. 2004.

[116] J. Wichard and M. Ogorzalek, “Time Series Prediction with Ensemble Models”,

Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN),

vol. 2, pp. 1625-1630, Jul. 2004.

[117] D. Samek and D. Manas, “Comparison of Artificial Neural Networks Using Prediction

Benchmarking”, Proceedings of the 13
th

 WSEAS International Conference on Automatic

Control, Modelling and Simulation (ACMOS), pp. 152-157, 2011.

[118] Y. Dong, J. Zhang, and J. M. Garibaldi, “Neural Networks and AdaBoost Algorithm

Based Ensemble Models for Enhance Forecasting of Nonlinear Time Series”,

Proceedings of the International Joint Conference on Neural Networks (IJCNN), vol. 1,

pp. 149-156, Jul. 2014.

[119] T. Kuremoto, S. Kimura, K. Kobayashi, and M. Obayashi, “Time Series Forecasting

Using a Deep Belief Network with Restricted Boltzmann Machines”, Neurocomputing,

pp. 47-56, 2014.

[120] R. Ormandi, “Applications of Support Vector-Based Learning”, Research Group on

Artificial Intelligence of the University of Szeged and the Hungarian Academy of

Sciences, Ph. D. Dissertation, 2013.

[121] P. Mirowski, “Time Series Modeling with Hidden Variables and Gradient-Based

Algorithms”, Department of Computer Science, Courant Institute of Mathematical

Sciences, New York University, Ph. D. Dissertation, 2011.

[122] http://mathworld.wolfram.com/Regression.html (Jan 2015)

[123] S. Boyd and L. Vandenberghe, “Convex Optimization”, Cambridge University Press,

2004.

[124] D. Bertsimas and J. N. Tsitsiklis, “Introduction to Linear Optimization”, Athena

Scientific, 1997.

[125] U. Paquest and A. P. Engelbrecht, “Training Support Vector Machines with Particle

Swarms”, Proceedings of the International Joint Conference on Neural Networks

(IJCNN), pp. 1593-1598, 2003.

[126] M. Reyes-Sierra and C. A. C. Coello, “Multi-Objective Particle Swarm Optimizers: A

Survey of the State-of-the-Art,” Proceedings of the International Journal of

Computational Intelligence Research, vol. 2, no. 3, pp. 287-308, 2006.

http://mathworld.wolfram.com/Regression.html

www.manaraa.com

116

[127] J. Fieldsend, “Multi–Objective Particle Swarm Optimization Methods”, Technical Report

No. 419, Department of Computer Science, University of Exeter, 2004.

[128] W.-C. Hong, “Chaotic Particle Swarm Optimization Algorithm in a Support Vector

Regression Electric Load Forecasting Model”, Energy Conversion and Management, vol.

50, no. 1, pp. 105-117, 2009.

[129] X. C. Guo, J. H. Yang, C. G. Wu, C. Y. Wang, and Y. C. Liang, "A Novel LS-SVMs

Hyper-Parameter Selection Based on Particle Swarm Optimization", Neurocomputing,

vol. 71, no. 16-18, pp. 3211-3215, 2008.

[130] H. Yuan, Y. Zhang, D. Zhang, and G. Yang, “A Modified Particle Swarm Optimization

Algorithm for Support Vector Machine Training”, Proceedings of the 6th World

Congress on Intelligent Control and Automation (WCICA), vol. 1, pp. 4128-4132, Jun.

2006.

[131] U. Paquest and A. P. Engelbrecht, “A New Particle Swarm Optimizer for Linearly

Constrained Optimization”, Proceedings of the IEEE Congress on Evolutionary

Computation (CEC), vol. 1, pp. 227-233, Dec. 2003.

[132] http://www.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html

(Jan 2015)

[133] https://www.quandl.com/YAHOO/INDEX_GSPC-S-P-500-Index (Jan 2015)

[134] M. Mohandes, “Support Vector Machines for Short-Term Load Forecasting”,

International Journal of Energy Research, vol. 26, no. 4, pp. 335-345, Mar. 2002.

[135] D. C. Sansom and T. K. Saha, “Energy Constrained Generation Dispatch based on Price

Forecasts Including Expected Values and Risk”, IEEE Power Energy Society General

Meeting, vol. 1, pp. 261-266, Jun. 2004.

[136] L. Tian and A. Noore, “A Novel Approach for Short-Term Load Forecasting Using

Support Vector Machines”, International Journal of Neural Systems, vol. 14, no. 5, pp.

329-335, Aug. 2004.

[137] B. Dong, C. Cao, and S. E. Lee, “Applying Support Vector Machines to Predict Building

Energy Consumption in Tropical Region”, Energy and Buildings, vol. 37, no. 5, pp. 545-

553, May 2005.

[138] Z. Bao, D. Pi, and Y. Sun, “Short Term Load Forecasting Based on Self-organizing Map

and Support Vector Machine”, Proceedings of the First International Conference on

Natural Computation (ICNC), Advances in Natural Computation, Lecture Notes in

Computer Science (LNCS), vol. 3610, pp. 688-691, Aug. 2005.

http://www.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html
https://www.quandl.com/YAHOO/INDEX_GSPC-S-P-500-Index

www.manaraa.com

117

[139] P.-F. Pai and W. C. Hong, “Forecasting Regional Electricity Load Based on Recurrent

Support Vector Machines with Genetic Algorithms”, Electric Power Systems Research,

vol. 74, no. 3, pp. 417-425, 2005.

[140] Y. Ji, J. Hao, N. Reyhani, and A. Lendasse, “Direct and Recursive Prediction of Time

Series Using Mutual Information Selection”, Proceedings of the 8th International Work-

Conference on Artificial Neural Networks (IWANN), Computational Intelligence and

Bioinspired Systems, Lecture Notes in Computer Science (LNCS), vol. 3512, pp. 1010-

1017, Jun. 2005.

[141] M.-G. Zhang, “Short-Term Load Forecasting Based on Support Vector Machine

Regression”, Proceedings of the Fourth International Conference on Machine Learning

and Cybernetics, vol. 7, pp. 4310-4314, Aug. 2005.

[142] X. Li, C. Sun, and D. Gong, “Application of Support Vector Machine and Similar Day

Method for Load Forecasting”, Proceedings of the First International Conference on

Natural Computation (ICNC), Advances in Natural Computation, Lecture Notes in

Computer Science (LNCS), vol. 3611, pp. 602-609, 2005.

[143] P.-F. Pai and W.-C. Hong, “Support Vector Machines with Simulated Annealing

Algorithms in Electricity Load Forecasting”, Energy Conversion and Management, vol.

46, no. 17, pp. 2669-2688, Oct. 2005.

[144] H.-S. Wu and S. Zhang, “Power Load Forecasting with Least Squares Support Vector

Machines and Chaos Theory”, Proceedings of the International Conference on Neural

Networks and Brain (ICNN&B), vol. 2, pp. 1020-1024, Oct. 2005.

[145] M. Espinoza, J. A. K. Suykens, and B. De Moor, “Load Forecasting Using Fixed-Size

Least Squares Support Vector Machines”, Proceedings of the 8th International Work-

Conference on Artificial Neural Networks (IWANN), Computational Intelligence and

Bioinspired Systems, Lecture Notes in Computer Science (LNCS), vol. 3512, pp. 1018-

1026, 2005.

[146] C.-C. Hsu, C.-H. Wu, S.-C. Chen, and K.-L. Peng, “Dynamically Optimizing Parameters

in Support Vector Regression: An Application of Electricity Load Forecasting”,

Proceedings of the 39
th

 Annual Hawaii International Conference on System Sciences

(HICSS), vol. 2, pp. 1-8, Jan. 2006.

[147] M. Espinoza, J. A. K. Suykens, and B. De Moor, “Fixed-size Least Square Support

Vector Machines: a Large Scale Application in Electrical Load Forecasting”,

Computational Management Science, vol. 3, no. 2, pp. 113-129, Apr. 2006.

[148] Y. He, Y. Zhu, and D. Duan, “Research on Hybrid ARIMA and Support Vector Mchine

Model in Short Term Load Forecasting”, Proceedings of the 6
th

 International Conference

on Intelligent Systems Design and Applications (ISDA), vol. 1, pp. 804-809, Oct. 2006.

	University of South Florida
	Scholar Commons
	3-13-2015

	Constrained Motion Particle Swarm Optimization for Non-Linear Time Series Prediction
	Nicholas Sapankevych
	Scholar Commons Citation

	tmp.1441901866.pdf.NGZ4d

